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Abstract
The realization of architectural free-form skins is a big challenge, in particular if one

desires a smooth appearance and uses curved panels. These have to be brought

into shape by special manufacturing technologies, most of which require the costly

production of moulds. Previous approaches to mould re-use relied on optimization

algorithms which play with the available tolerances and allowed deviations from the

reference geometry. One aims at a good trade-off between fabrication cost and a

visual appearance which comes close to the original design intent.

For general free-form surfaces, there may be no other ways to computationally solve

the panelling problem. However, we will show in this paper that there is a rich

class of surfaces which very much look like free-form shapes, but have significant

advantages over totally unrestricted free-form geometries. These surfaces are known

as Weingarten surfaces. They are characterised by a relation between their principal

curvatures, leading to a just one-parametric family of curvature elements and thus

local surface shapes. This allows one to fabricate N panels with a number of moulds

which is roughly just
√

N . Moreover, if the panels are fabricated from material which

is not rigid after panel production, one can exploit the allowed deformations through

bending and further increase the accessible shape variety or reduce the number of

moulds even more. We also provide an overview of computational techniques for

the computation of Weingarten surfaces and their deformation through bending and

illustrate the approach through a number of architectural case studies.

Keywords: panelling, architectural free-form skin, mould re-use, Weingarten sur-

face, optimization, discrete differential geometry
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1 Introduction

Panelling is a highly important topic in free-form architecture, especially if the

panels are not flat and need to be brought into shape by special manufacturing

technologies. For double curved panels, this is mostly done with help of moulds.

Their fabrication is typically more expensive than the production of the panel with

that mould.

A general free-form shape, no matter which layout of panel seams is chosen, will

lead to panels all of which are at least slightly different from each other. This lack

of repetition in panel shapes is a severe problem and a major factor in cost explosion.

One obvious way to deal with this problem is to give up on the smoothness of the

overall skin and work with simpler panel shapes, in particular flat ones. A large

portion of architectural geometry deals with this problem and provides solutions

that have already found their way into architectural practice (for a survey see

Pottmann et al. 2015).

Figure 1: Isometric deformations of a spherical patch. All these surfaces can be cladded by
bending panels formed on the same spherical mould. A sample building designed with these
surfaces is shown in fig. 2 (right).

Panelling is an optimization problem which has discrete and continuous variables.

The discrete variables include the ones which select the type of panel (planar,

cylindrical, various types of double curved panels, etc.) and assigns moulds to

those where moulds are needed. This facilitates mould re-use when possible. The

continuous variables are those which determine the exact parameters of a panel,

which depend on their type, and their exact position in space. A solution for this

problem has been presented by Eigensatz et al. (2010): Given a design surface

and a layout of panel seams, it minimises the cost under provided tolerances on

the allowed deviation from the design surface and on gaps between panels (which

will be hidden in the seams) and kink angles (angles between normals) at adjacent

panels. In this way one can find a balance between the quality of the architectural

skin and its fabrication cost. By the nature of the optimization problem one has to

apply heuristics and thus it is not guaranteed that a minimum is found.
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Figure 2: Architectural cladding with intrinsic repetition. On the left, a building composed of a
repeated shape that is isometric to a Weingarten surface. For this kind of shapes, if dealing with
flexible cladding materials, N panels can be formed with approximately

√

N moulds and applied
over the surface by isometric bending. On the right, a building made of surfaces isometric to the
same sphere. In this case, all panels can be formed on a single mould and bent on the surface.

In the present paper we take a slightly different perspective. We aim at special

shapes which facilitate mould re-use, but look very much like free-form shapes

and should be sufficient in terms of possible shape varieties for the architectural

application. This amounts to a search for surfaces where one has a precise or nearly

precise agreement of local surface shapes at the size of a panel. This depends on

the type of material one is using:

If the panel is rigid after production, one needs local extrinsic repetition, meaning

that there exist many instances of local neighbourhoods on the surface which are

congruent to each other. An example is provided by surfaces of revolution or helical

surfaces. They can be moved in themselves and thus one has this local extrinsic

repetition along the trajectories of the generating motion, i.e., along parallel circles

or helical paths. Giving up a bit on that, we will argue that surfaces which possess

curves along which the curvature behaviour is the same (the two principal curvatures

are constant along these curves), offer similar advantages for panelling.

If the panel is not rigid and still can be bent within some limits (but not stretched),

one can look for local intrinsic repetition. This means that certain local neighbour-

hoods of the size of a patch can be matched by an isometric (length-preserving)

deformation. Obviously, all surfaces which arise from those with extrinsic repetition

by an isometric deformation, are in this class. Here, one gets quite easily shapes

that are generated from simple ones, but have a free-form appearance (see fig. 1).

This is due to the human eyes not recognizing intrinsic repetition as well as extrinsic

repetition.

1.1 Overview and contributions

• We show that so-called Weingarten surfaces, whose principal curvatures κ1,κ2

are related by a function, F (κ1,κ2) = 0, offer advantages in cost effective panelling.
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They possess an extrinsic repetition property, namely for their curvature elements.

• We present an overview of existing, partially very recent contributions to the

computation of important classes of Weingarten surfaces.

• We show how to effectively perform an isometric deformation of a given shape

using a very recent approach to discrete surface mappings based on quad meshes.

• We accompany our work with examples and design studies and outline promising

directions for future research.

2 Basic geometry

2.1 Surfaces with extrinsic repetition

The simplest way of obtaining repetition in panels on a surface is the presence of

symmetries. There may be a part of the surface which after applying the present

symmetries (e.g. reflections at planes) yields the entire surface. One could call

this part the fundamental domain F , which is common terminology in the study

of tilings. If the fundamental domain F is covered with m panels and there are k

copies of F which make up the overall surface S, then the total number of panels

is N = km. Since k is usually a small integer, one does not gain too much in this

way, as the number m of moulds will still be high for a sufficiently complex design.

In particular, the more extrinsic symmetries are present, the less the surface S will

have a real free-form appearance.

As already mentioned above, there is a case where m and k can be of the same order

of magnitude. It happens if the surface allows for a motion in itself. This is the

case if S is either a rotational surface, a helical surface or a general cylinder. The

latter case is a special single curved surface and does not deserve much attention

here, as our focus is on double curved panels. For a rotational or helical surface,

k +1 positions of a profile curve p (needs not be planar) and the m+1 trajectories

of m+ 1 points on p determine a curve network with N = km faces. Since panels

along trajectories are congruent, this requires only m moulds. However, now k and

m can be both large. For example, we may have k = m and thus a reduction from

N panels to
√

N moulds. Note that so far we would achieve a perfectly smooth

skin, but have the disadvantage of a surface which is clearly not free-form.

To come closer to free-form surfaces while keeping some extrinsic repetition of

panels, we have to give up a bit on the quality of the resulting surface by allowing

small gaps and kinks between adjacent panels. However, there is still a chance to

get pretty close to the appearance of a smooth surface. Usually, an architectural
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skin does not exhibit strong and sudden curvature variations. This means that

the curvature element at a point p, which may be represented by the osculating

paraboloid (see Pottmann et al. 2007), will fit well in some neighbourhood of p.

We make then the assumption that, on architectural surfaces, this neighbourhood

has approximately the size of a single panel. As we want again a reduction from

N to
√

N moulds, we have to make sure that curvature elements agree along

curves on the surface. We want then such curves to be a one-parameter family of

curves that cover the entire surface. This means that we have just a one-parameter

family of different curvature elements, or equivalently, pairs (κ1,κ2) of principal

curvatures. These pairs may be seen as points in the (κ1,κ2)-plane, where they

form a curve. A curve has an implicit representation

F (κ1,κ2) = 0. (1)

Hence, we have a functional relation between the principal curvatures on the surface

S. Such surfaces are called Weingarten surfaces, named after Julius Weingarten

(1861) who studied them first. In fact, his study has been about surfaces with

intrinsic repetition, namely those which are isometric to surfaces of revolution. He

characterised those as focal surfaces (formed by the principal curvature centres) of

surfaces with a functional relation between principal curvatures. Hence, extrinsic

and intrinsic repetition are closely connected topics.

Let us point out that the agreement of curvature pairs (κ1,κ2) happens along the

isolines of curvature. These are curves along which (κ1,κ2) are constant. Due to

eq. (1), it suffices to require that κ1 or κ2 or another function of them (different

from F ) is constant. Since curvature elements agree along isolines of curvature,

panels which can be formed by the same mould are roughly aligned along them

(see fig. 3).

Let us briefly address some familiar classes of Weingarten surfaces. Of course,

helical and rotational surfaces are Weingarten surfaces. Although one is usually

not concerned so much about eq. (1), it could be even prescribed for rotational

and helical surfaces mathematically (leading to an ordinary differential equation),

but the relation between equation and shape is not intuitive. Another class of

Weingarten surfaces are tubes with constant radius r around space curves. There,

one principal curvature, say κ1, equals 1/r and thus F = κ1 −1/r. The simplest

and most important functions of the principal curvatures are mean curvature

H = (κ1 +κ2)/2 and Gaussian curvature K = κ1κ2. Surfaces with constant values

of H or K have been extensively studied in differential geometry. In particular, we

point to minimal surfaces H = 0 and developable surfaces K = 0.
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There is a considerable amount of mathematical research going on studying so

called linear Weingarten surfaces. These are surfaces with an (affine) linear relation

between the Gaussian and mean curvature (see e.g. Pámpano 2020).

Particularly interesting for applications are surfaces with a constant ratio c of prin-

cipal curvatures, i.e., F (κ1,κ2) = κ1 −cκ2 = 0. Here, all moulds for manufacturing

panels are geometrically similar to each other. Additionally, for c < 0, such surfaces

allow for mounting a curved support structure consisting of bent rectangular strips

orthogonally on the surface. This structure follows the network of asymptotic curves

with constant intersection angle (see Jimenez et al. 2020; Schling et al. 2018).

(a) (b) (c)

Figure 3: Panels design for mould re-use. (a) Weingarten surfaces designed with Pellis et al.
(2020). Isolines of curvatures κ1 and κ2 are shown in red and blue respectively. Coincident
isolines layouts indicate that if one of the principal curvatures is constant, so is the other one.
(b) Extrinsic repetition. Panels are clustered according to curvature isolines. Panels belonging to
the same cluster (shown with the same color) can be formed on the same mould. (c) Intrinsic
repetition. The surface is deformed isometrically with Jiang et al. (2020). If realised with a flexible
material, panels clustered on (b) can take their shape on the surface (c) by isometric deformation.
Architectural applications are shown in fig. 8.

2.2 Surfaces with intrinsic repetition

Let us assume that the panels are not rigid and still allow for some bending without

stretching. Then, we can apply isometric deformations to panellisations which have

extrinsic repetition and obtain ones with intrinsic repetition. The moulds can be

the same as for the extrinsically repetitive surface. Since isometric mappings allow

for the generation of a large shape variety, one could actually realise very different

architectural skins with the same set of moulds.
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Let us first discuss isometric mappings between surfaces. They have the attractive

property of preserving all lengths of curves, hence also angles between tangents and

areas of domains. In fact, they even preserve the Gaussian curvature K. Hence

intrinsic repetition happens along isolines of Gaussian curvature.

If we are fine with an intrinsic counterpart to the Weingarten surfaces discussed

above, we simply have to apply isometric mappings to them. This can change

their appearance significantly as demonstrated in fig. 4. It is well known that

a rotational surface can be mapped isometrically to a one-parameter family of

different rotational surfaces and a two-parameter family of helical surfaces (Bour’s

theorem). A beautiful constructive proof with help of strip models formed by

rotational cones or parts of developable helical surfaces can be found in the first

book on discrete differential geometry (difference geometry) by R. Sauer (1970).

Figure 4: Isometric deformations of a rotational surface with Wang et al. (2019). We can observe
the high design freedom allowed by isometric deformations of a given shape.

3 Algorithms and computational tools

3.1 Computation of Weingarten surfaces

This subsection is an overview of possible approaches to the computation of

Weingarten surfaces. It would lead too far to discuss these methods in detail. Note

that our focus is on the demonstration of the potential which Weingarten surfaces

provide for panelling architectural skins.

Generating Weingarten surfaces by analytical descriptions is a challenging math-

ematical research topic. However, for applications it is important to get hands

on computational tools that enable a designer to work directly with the shape

incorporating also handle-based editing strategies. To that end, it is advisable to

model Weingarten surfaces as discrete nets/meshes which are also well suited for

computation by optimization.

Smooth Weingarten surfaces such as minimal surfaces, CMC (constant mean

curvature) surfaces, and surfaces with constant Gaussian curvature, on which there

is a vast amount of theory, have been discretised in various ways. Discretisations

of such surfaces which focus on preserving integrability lie at the heart of structure

preserving discrete differential geometry (Bobenko and Suris 2008).
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Robust computation methods of discrete CMC surfaces with fixed given or free

boundaries performs computations on a type of Voronoi tessellation (Pan et al.

2012). This method works very well to generate the shape of CMC surfaces, but

naturally neglects the mesh layout as part of the design. This however can be very

important particularly for architectural applications such as panelling.

Studying methods for modelling developable surfaces, which are also Weingarten

surfaces, is an active research topic (Rabinovich et al. 2018a,b; Jiang et al. 2020).

Architectural applications reach from famous designs by F. Gehry to cost effective

panelling to curved support structures (Schling et al. 2018).

Weingarten surfaces, defined by an affine linear relation aH + bK − c = 0 between

mean curvature H and Gaussian curvature K have been recently studied by Tellier

(2020), both from a computational perspective and with a view towards applications

in architecture. We add here their advantage in connection with panelling.

Weingarten surfaces with a linear relation between the principal curvatures have the

property that all moulds for manufacturing panels are geometrically similar to each

other. On the theoretical side these surfaces can be generated as PQ-nets by a

Christoffel-type dualisation process out of special spherical PQ-nets (Jimenez et al.

2020). More important for applications however are such surfaces in the context of

A-nets when these surfaces are negatively curved. These A-nets assume a constant

intersection angle of parameter lines along which one can attach a curved support

structure (Jimenez et al. 2020). Here the supporting strips sit orthogonally on the

surface and can be unfolded into the plane becoming elongated rectangles which

makes fabrication by bendable material quite efficient.

Mould re-use with bendable material is also achieved when panelling surfaces that

are isometric to a surface of revolution. Discrete models perfectly suitable to

model surfaces that are isometric to rotational surfaces are described by discrete

orthogonal geodesic coordinates. They utilise the fact that the meridian curves

and parallel circles of a surface of revolution constitute special orthogonal geodesic

coordinates on the surface (Wang et al. 2019). Handle-based editing allows for

modelling surfaces that are isometric to rotational surfaces without knowing the

latter.

Another recent approach to the design of Weingarten surfaces, also addressing

mould re-use, is to model surfaces by special discrete S-nets (Pellis et al. 2020).

S-nets are, apart from singular vertices, regular quadrilateral meshes where each

vertex and its four connected neighbours lie on a sphere (see also Schling et al.

2018). This carries a lot of curvature information of the net. By solving an
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optimization problem, the discrete principal curvatures can be constrained to fulfil

affine linear relations.

3.2 Computing isometric deformations

Isometric or near isometric deformations have received a lot of interest in Geometry

Processing and Computer Graphics (see e.g. Chern et al. 2018; Pietroni et al. 2010;

Sorkine and Alexa 2007). We use here the probably simplest approach to isometric

deformations due to Jiang et al. (2020). It represents the surface to be deformed as

a quad mesh S and encodes the isometry condition into the quadrilateral faces. Let

v1, . . . ,v4 be a quad before deformation and v
′

1, . . . ,v′

4 its image after deformation

(fig. 5). Isometry requires that (i) the lengths of diagonals in corresponding quads

are the same,

(v1 −v3)2 = (v′

1 −v
′

3)2, (v2 −v4)2 = (v′

2 −v
′

4)2, (2)

and that (ii) the angle between the diagonals remains unchanged during deformation.

In view of eq. (2), this can be expressed as

(v1 −v3) · (v2 −v4) = (v′

1 −v
′

3) · (v′

2 −v
′

4). (3)

Hence, one has very simple quadratic constraints which can nicely be satisfied using

a Levenberg-Marquardt optimization algorithm (see Jiang et al. 2020).

3.3 Panelling

The state of the art method of Eigensatz et al. (2010) for computing cost optimal

panelling solutions on free-form surfaces relies on a time-consuming discrete op-

timization algorithm to identify panel repetition, i.e., to find extrinsically similar

regions of a reference surface where the same panel can be used. On a Weingarten

surface such regions occur along isolines of curvature. This allows us to replace the

expensive discrete optimization by a simple clustering step and directly proceed with

non-linear optimization to minimise gaps and kink angles between neighbouring

panels as proposed by Eigensatz et al. (2010).

Given a curve network of panel seams with N faces (each such face has to be

covered by a panel) on a reference surface, we cluster the faces according to

curvature to form roughly
√

N clusters, see sec. 4.1. Each cluster contains all

panels that are manufactured using the same mould. Computationally, panels

that stem from the same mould share their shape parameters, for example the

coefficients of the defining polynomial when dealing with paraboloids and cubics.
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Figure 5: Isometric deformation of a surface represented as a quad mesh (yellow). In each pair of
corresponding quads (in general not planar), corresponding diagonals (red, blue) have the same
length and they form the same angle.

(a)

(b)

kink angles [◦]gap [m]

Figure 6: Comparison of panelling solutions on Weingarten surfaces obtained with (a) our method
and (b) Eigensatz et al. (2010). The top row shows a solution with 960 unique cubic panels.
From the left, the panels clusters and the resulting zebra striping of the panellised surface are
shown. The histograms display the corresponding gaps and kink angles between adjacent panels,
measured along the network of seam curves at 10216 regularly spaced locations. See tab. 1 for
further statistical data.

We compare this approach with Eigensatz et al. (2010) by tuning the parameters

in their algorithm to obtain approximately
√

N unique moulds. In the examples

shown in fig. 6 and 7 we restrict the admissible panel types to cubics.
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(a)

(b)

kink angles [◦]gap [m]

Figure 7: Comparison of panelling solutions on Weingarten surfaces obtained with (a) our method
and (b) Eigensatz et al. (2010). The top row shows a solution with 480 unique cubic panels.
From the left, the panels clusters and the resulting zebra striping of the panellised surface are
shown. The histograms display the corresponding gaps and kink angles between adjacent panels,
measured along the network of seam curves at 5336 regularly spaced locations. See tab. 1 for
further statistical data.

#moulds #panels med (max) gap med (max) kink

fig. 6 (a) 30 960 0.0023 (0.0544) m 0.549◦ (12.954◦)
(b) 31 960 0.0055 (0.0445) m 1.305◦ (8.004◦)

fig. 7 (a) 20 480 0.0029 (0.0280) m 0.438◦ (3.536◦)
(b) 22 480 0.0033 (0.0322) m 0.454◦ (2.810◦)

Table 1: Divergence (gap) and kink angle analysis for the examples shown in fig. 6 and 7. The
respective median values as well as the maximum are listed.

4 Applications

We outline now a possible work-flow for the design of free-form shapes with intrinsic

and extrinsic panel repetition.
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4.1 Design with extrinsic panel repetition

The first step is to design a Weingarten surface, following one of the approaches

presented in sec. 3.1. In our examples, we modelled such surfaces through a quad

mesh with Pellis et al. (2020). Once we have a suitable shape, a desired panel

layout can be designed over the surface. There are no particular restrictions on the

layout. Hence, individual panels shall be clustered in groups that can be formed on

the same mould. Clustering can be done according to the average of the principal

curvatures within each panel. Since on Weingarten surfaces principal curvatures are

in functional relation, panel clusters will occur approximately along the curvature

isolines (see fig. 3). Once we have the panel clusters, the shape of each mould can

be computed through optimisation as described in sec. 3.3.

4.2 Design with intrinsic panel repetition

If the cladding is realised with a flexible material, one can aim at intrinsic repetition.

In this case, for shape design, a Weingarten surface can be further modified through

isometric deformation. As shown in fig. 1 and 4, isometric deformation allows us

significantly greater design freedom. To this end, the method of Jiang et al. (2020)

can be used for interactive modelling. A panel layout can then be designed on the

final shape. Since extrinsic repetition of local shape occurs on the undeformed

surface, for clustering and mould design the panel layout shall be mapped back

to the starting Weingarten surface. We can then proceed as in sec. 4.1. Since

made with bendable material, the resulting panels will take their final shape on the

design surface by (approximately) isometric deformation.

Figure 8: Intrinsic repetition. Architectural skins with panel layouts shown in fig. 3 (c).

While the majority of examples in our paper follow a quadrilateral panel layout, this

is not necessary, as illustrated by a hexagonal panelling in fig. 9.

It is important to note the following: The panellisations in fig. 2 and 9 are smooth

even across panel boundaries, since the original rotational surface (sphere) has a

precise extrinsic repetitive structure. This is not true for panellisations of other

Weingarten surfaces, whether extrinsic or intrinsic. Depending on how well the
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panellisation algorithm outlined in sec. 3.3 has performed, there will be kink angles

and small gaps of a size so that they can be hidden in the seams.

(a) (b)
Figure 9: Hexagonal panelling with mould re-use. (a) A hexagonal panel layout designed on a
shape isometric to a rotational surface. (b) For panel clustering and mould design, the panel
layout shall be mapped back to the corresponding undeformed rotational surface. On the left, we
illustrate shapes from fig. 1 and 4, cladded with hexagonal flexible panels.

5 Conclusion and future research

We have proposed Weingarten surfaces as preferable shapes for the design of

architectural skins due to their advantage in panelling them. While these surfaces

look like free-form shapes, they are repetitive in curvature elements (small surface

patches). This yields a significant reduction in the number of moulds, namely

roughly
√

N moulds for the production of N panels. If one uses panels which after

production can still be bent, one can enrich the class of preferred design surfaces

by those which are isometric to Weingarten surfaces. They still have the same

advantages in terms of mould re-use.

In mathematics, there is ongoing research on Weingarten surfaces, also on dis-

crete models which may be directly useful for architectural applications. On the

computational side, it may be very interesting to come up with an algorithm

which approximates an arbitrary free-form surface by a Weingarten surface. The

functional relation F (κ1,κ2) = 0 would not be prescribed, but emerge as a result

of an optimisation algorithm. That algorithm needed to take as input a surface

S which is not Weingarten, which means that the set of principal curvature pairs

(κ1,κ2) forms a certain domain D in the (κ1,κ2)-plane. During optimisation, S

needed to be modified minimally to a new surface S′ whose associated curvature

domain D′ is a curve or at least very close to a curve. For the panelling application,

it may be even better to directly combine this with local surface approximations

(of the size of panels) rather than working with curvatures.

The presented approach to panelling with flexible material is more special than

required from a purely geometric perspective. One could nicely cover arbitrary free-

form surfaces S with panels from flexible material. There, mould repetition should
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occur roughly along the curves of constant Gaussian curvature of S. However,

we are currently lacking a panellisation algorithm in the style of Eigensatz et al.

(2010), which exploits isometric deformations of panels. The efficient computation

of isometries according to Jiang et al. (2020) should make this possible. Since

isometric deformations have more degrees of freedom than rigid body motions, the

results on arbitrary surfaces with isometrically bent panels could be even better

than those for Weingarten surfaces with rigid panels.
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