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Abstract
A signi•cant amount of research in Architectural Geometry has dealt with skins and
structures which follow a quadrilateral layout with double curvature. In many cases,
such quad networks are computationally accessed by quad meshes which obey various
constraints. These may concern planarity of faces, supporting structures which follow
speci•c curvature paths, conditions on node angles, static equilibrium and others.

In this paper we draw the attention to a new way of computing such constrained
quad meshes. The new methodology is based on the diagonal meshes of a quad
mesh and the checkerboard pattern of parallelograms one obtains by subdividing a
quad mesh at its edge midpoints. The new approach is easy to understand and
implement. It simpli•es the transfer from the familiar theory of smooth surfaces to
the discrete setting of quad meshes. This is illustrated with planar quad meshes and
asymptotic nets, in particular with those exhibiting a constant node angle.

The application of such networks has advanced fabrication-aware-design in the ar-
chitectural practice. Looking at asymptotic nets speci•cally, we list their potentials
and challenges for the construction of strained gridshells. The bene•ts of constant
node angles are highlighted along di!erent construction methods in timber and steel.
We conclude with current developments, looking at less-restricted and transformable
asymptotic structures, and how they are designed.

Keywords: Quad meshes, mesh optimization, constrained meshes, asymptotic
curves, construction-aware design, gridshells
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Figure 1: Asymptotic Gridshells have enjoyed international popularity in academic and commercial
projects. Top Row: INSIDE/OUT Pavilion at the TUM Campus in Munich (Schling et al. 2017).
Second Row: Left: Workshops at Chalmers University in Gothenburg (2019 and 2020) (Adiels et al.
2019); Middle: Steel Structure at the National Taiwan University of Science and Technology (Shih
et al. 2019); Right: Super Succah, Sculpture at the Sea, Bondi, Sydney (Maxwell 2019). Bottom
Row: First permanent Asymptotic Canopy for the Intergroup Hotel in Ingolstadt in collaboration
with Brandl Steel, Eitensheim (Schling and Schikore 2020).

1 Introduction
Architectural skins are frequently based on quadrilateral meshes which are aligned
with panel boundaries and the support structure. Various construction constraints
lead to speci•c types of underlying quad meshes. This has been a topic of numerous
papers on architectural geometry. For an overview, we refer to Pottmann et al.
(2015). The most prominent examples are meshes with planar quads (PQ meshes),
in particular those whose panels are nearly rectangular. Those “principal meshes”
enjoy a number of favourable properties for architectural applications, but they are
also important from a purely geometric perspective (see Liu et al. 2006; Pottmann
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et al. 2007; Bobenko and Suris 2008). Geometrically speaking, they follow the
principal curvature lines of an underlying smooth reference surface.

Another important type of meshes, which however only exist on surfaces with
negative Gaussian curvature, are asymptotic meshes or A-nets. These are quad
meshes with planar vertex stars, i.e., a vertex and its four connected neighbours lie
in a plane (Bobenko and Suris 2008). Such meshes follow the asymptotic curves
(curves with vanishing normal curvature) of a smooth reference surface. They form
the basis of asymptotic gridshells, which can be manufactured from planar straight
metal strips (seeSchling (2018); Schling et al. (2018) and•g. 1 ).

In this paper we would like to draw the attention to a new way of computing such
constrained quad meshes. The new methodology is based on the diagonal meshes
of a quad mesh and emerged in work of Jiang et al. (2019) on certain checkerboard
patterns of rectangles which approximate surfaces. It is easier to deal with than
previous methods, especially from a computational perspective. Moreover, it allows
one to transfer certain concepts from the classical setting of smooth surfaces to
quad meshes in a rather straightforward way.

In particular we deal with discrete intersection angles, callednode angles, which
we understand in the following sense: A fair quad mesh can be seen as a discrete
version of a network of curves on a smooth surface. The network curves intersect
each other at an angle which may or may not depend on the location. Here, we
mostly deal with the latter case of a constant angle. For example, the network
of principal curvature lines on a surface has a right intersection angle. Discrete
versions of it are the principal meshes mentioned above. We will call them PQ
meshes with a right node angle, which is meant as a discrete counterpart of the
smooth setting. In fact, for a conical or circular mesh, usually none of the four
edges meeting at a vertex (node) will do so under right angle. However, under
re•nement and by keeping the de•ning property, the mesh will converge to an
orthogonal curve network, namely the principal curvature lines. In the present
paper, we will study other node angles than right ones as well. Finding proper
discrete expressions has not been easy with previous approaches, but is very simple
with the present technique.

Finally, we look at the application of such meshes in architecture. Focusing on
asymptotic networks we discuss the bene•ts of constant node angles along di!erent
construction methods in timber and steel. Node angles may also be used as design
parameters. We introduce recent and future projects with variable node-angles that
create freeform and transformable asymptotic structures.
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1.1 Overview and contributions

• We provide alternative discrete models for quad meshes which are of interest in
architecture. Our approach uses the two diagonal meshes of a quad mesh (control
mesh) and a checkerboard pattern of parallelograms which arises from the control
mesh by subdivision at edge midpoints.

• We show how to design and optimize PQ meshes and A-nets with a speci•c
focus on controlling the node angle. In particular, we discuss PQ meshes with a
constant node angle that needs not be a right angle. Among these structures, we
•nd checkerboard patterns from “white” planar faces and “black” rhombuses which
are similar to each other (scaled versions of each other). They appear as a discrete
model of a class of surfaces which extends the well-known isothermic surfaces. The
latter can be represented by checkerboard patterns from black squares and white
planar faces.

• We discuss A-nets with a constant node angle, thereby simplifying a recent
approach by Jimenez et al. (2020).

• We show how to solve rationalization problems with the structures mentioned
above.

• We use the node angle as a design tool in form-•nding processes.

• We illustrate our work by real projects and fabricated models.

1.2 Related work

The idea of checkerboard patterns and the closely related concept of working with
a pair of meshes previously appeared in various special cases in pure mathematics.
Kenyon (2002) uses it in connection with discrete complex analysis, while Bobenko
et al. (2016); Techter (2020) employ mesh pairs to express right angles for discrete
versions of the orthogonal system of confocal quadrics.

Following up on checkerboard patterns by Jiang et al. (2019, 2020) present a new
approach to discrete developable surfaces and isometric deformations, a topic which
is also of high interest in architecture. The discrete developable surfaces therein are
more ‚exible than previous versions, among which the discrete orthogonal geodesic
nets by Rabinovich et al. (2018) are probably the most interesting ones.

The optimization framework which we employ in our research is not considered a
contribution, as we simply follow Tang et al. (2014); Jiang et al. (2019).
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2 Theory and computation

General setup.

Our structures are derived from a quad meshC, calledcontrol mesh. Inserting edge
midpoints in a not necessarily planar quadrilateral and connecting them, one obtains
a parallelogram (•g. 2 , left). By the intercept theorem, its edges are parallel to
the diagonals of the quad and have half their length. Performing this mid-edge
subdivision in all quads ofC, we obtain a checkerboard (CB) patternP with one
family of planar quads (we call them the black ones) being parallelograms (•g. 2 ,
middle). The other (white) quads are in general not planar, but they are scaled
versions with factor 1/2 of a face in one of the two diagonal meshesD1,D2 of C
(•g. 2 , right; and •g. 11 , middle).

Figure 2: Left: The edge midpoints of a quad form the vertices of a parallelogram whose edges
are parallel to the diagonals of the quad and of half their length. Middle: These parallelograms
form a checkerboard pattern. Right: The diagonals of a quad mesh (yellow) can be arranged in
two quad meshes (red, blue). Each white face in the checkerboard pattern is a scaled version
(with factor 1/2) of a face in one of the two diagonal meshes.

As discussed in more detail by Jiang et al. (2019), the black parallelograms provide
•rst order information on the discrete surface parametrisation which is represented
by the patternP, and in fact also by both of the diagonal meshesD1,D2. For
example, if the parallelograms are rectangles,P and D1,D2 can be considered as
discrete orthogonal nets.

A key observation is the following one: Node angles measure discrete intersection
angles of mesh polylines. In each quad of the control mesh, the two edges of the
mesh pair(D1,D2) are the diagonals of that quad. They may be seen as discrete
surface tangents and their angle is easily computed. Hence,in our discrete model
node angles appear as angles between diagonals in the quads of the control mesh.

Planar quads and constant angle.

If we want a CB-pattern from planar quads, we also have to make the white faces
planar. This implies that both diagonal meshesD1,D2 have to be PQ meshes. So
far, there is no advantage of using two meshes. However, it becomes apparent if
want the planar quads to be as rectangular as possible. Then, all parallelograms in
the pattern P have to be rectangles. This is expressed via the additional constraint
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that each quad of the control meshC has to possess orthogonal diagonals. Note
that this condition is simpler than the ones involved in circular meshes or conical
meshes which have been used previously to obtain PQ meshes whose faces are as
rectangular as possible (principal meshes). While the CB-pattern itself lacks a bit in
terms of smoothness, each of the two diagonal meshes is a principal mesh, with all
advantages that come with it, e.g., the existence of a torsion free support structure
(see also Jiang et al. 2019). The node axes of the support structure are easily
computed. The axes for the vertices ofD1 are orthogonal to the corresponding
faces inD2, and vice versa (see•g. 3 ).

Figure 3: Principal meshes in the diagonal mesh approach have discrete surface normals which
are suitable as node axes of a torsion free support structure. Left: The node axis at a vertex of
one diagonal mesh (red) is orthogonal to the corresponding planar face of the other diagonal mesh
(blue). Hence, node axes at connected vertices lie in the normal plane of the orthogonal crossing
diagonal (blue). Right: Torsion free support structure attached to a principal diagonal mesh.

It is easy to change the constant angle from a right one to another angleÐ. The
angle is re‚ected in the angle of the diagonals in the quads of the control mesh.
The only issue with a constant angleÐ Ó= Þ/2 is that one has to prescribe which
of the two angles isÐ in which isÞ­ Ð. To do this, we select one diagonal in
each quad and call itv i 0v i 2. The other diagonal is thenv i 1v i 3, assuming that
the vertices occur in the orderv i 0, . . . ,v i 3 in a counter-clockwise orientation, when
viewed from one selected side of the surface (•g. 11 , left). The angleÐ is then
enforced between vectorsv i 2 ­ v i 0 and v i 3 ­ v i 1 (seeeq. (4) ). To obtain a visually
smooth result, this requires a choice of diagonals per quad so that these diagonals
form fair polylines. At combinatorial singularities of the mesh this is only possible
if an even number of edges meets there (•g. 4 ). Hence, we can only work with
control meshes whose singularities are of even valence.

Figure 4: The angle between two diag-
onals can be determined by the rotation
from one diagonal (black) to the other.
This requires the selection of one di-
agonal per quad so that they form fair
polylines, which is only possible for even
valencev (left, v = 6 ), but fails for odd
valence (right, v = 5 ).
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A CB-pattern associated with these PQ meshes and a constant angle is formed by
parallelograms all of which have the inner anglesÐ andÞ­ Ð. One can even further
restrict these meshes and require that all these parallelograms arerhombuses, i.e.,
have equal edge length. But the edge length varies over the structure. To achieve
this, we just have to make sure that the two diagonals in each quad ofC have
the same length. For a right angle, we obtain checkerboard patterns of congruent
black squares and white planar faces. It has been argued by Jiang et al. (2019) that
these are discrete isothermic surfaces and as such subject to a shape restriction
of the reference shape. The case of similar rhombuses (not squares; see•g. 12 )
also has a counterpart in the smooth theory: These are conjugate parametrisations
which can be mapped conformally to a planar grid of parallel lines with constant
angleÐ. We are not aware of a study of such surfaces in di!erential geometry.

For rationalizationof a given design surface with a PQ mesh of a constant node
angleÐ in the above sense, one •rst has to investigate the smooth setting. A PQ
mesh is a discrete counterpart of a so-called conjugate curve network. At each
point, the two curves of the network are tangent to conjugate directions. Conjugate
directions are a second order concept and depend on the curvature behaviour. To
understand it, we may introduce a local Cartesian coordinate system in the tangent
plane at a pointp of a surfaceS, whose axes are the two principal directions.
Denoting the associated principal curvatures byÙ1,Ù2, the normal curvatureÙn in
a tangent directiont = ( cosã, sinã) at angleã against the •rst principal direction
is computed via Euler’s formula:

Ùn = Ù1 cos2 ã + Ù2 sin2 ã. (1)

In this local system, conjugate directionst 1 = ( x1,y1) and t 2 = ( x2,y2) are charac-
terized by

Ù1x1x2 + Ù2y1y2 = 0 . (2)

Our PQ meshes of constant angle are discrete versions of conjugate networks with
constant angle. Hence, we have to look for those pairs of conjugate directions
at a surface point which form the angleÐ. For Ð = Þ/2, these are the principal
directions ((1,0) and (0,1)). For another angleÐ, we have to •nd a pair of
directionst 1 = ( cosã, sinã) and t 2 = ( cos(ã + Ð),sin(ã + Ð)) which satisfyeq. (2) .
We obtain the condition

(Ù2 ­ Ù1)cos(2ã + Ð) = ( Ù1 + Ù2)cosÐ. (3)

44



Computational Design and Optimisation of Quad Meshes Based on Diagonal Meshes

For our application, the angleÐ is given andã is computed,

ã = (arccosC ­ Ð)/ 2, C =
Ù1 + Ù2

Ù2 ­ Ù1
cosÐ.

This requires­ 1 ® C ® 1. Due to the symmetry with respect to the principal
curvature directions, a solution pair to(ã,Ð) implies the symmetric solution pair
to angles(­ ã, ­ Ð). Depending on the sign of the Gaussian curvatureK = Ù1Ù2,
we have the following three cases.

• K < 0, hyperbolic surface point. There, we have two solution pairs for any
choice ofÐ. It includes the limit case of asymptotic directions (tan ã =
ð

|Ù1/Ù2|), which are characterized by vanishing normal curvature, are self
conjugate and thus belong toÐ = 0 .

• K = 0 , parabolic surface point. Let us assumeÙ1 = 0 ,Ù2 Ó= 0 . Now eq. (3)
readscos(2ã + Ð) = cosÐ and shows thatã = 0 yields a solution for anyÐ.
This expresses the fact that any direction is conjugate to the single asymptotic
direction (1,0).

• K > 0, elliptic surface point. In this case, we only have a certain interval for
possible values ofÐ, namelyÐ Ï [2Ò,Þ/2], with tan Ò=

ð
Ù1/Ù2. Here,Ò

is the angle of a so-calledcharacteristic directionagainst the •rst principal
direction (•g. 5 , bottom right). Its conjugate direction is symmetric with
respect to the principal directions. This interval forÐ reduces to the single
value Ð = Þ/2 (i.e., Ò= Þ/4) at an umbilic (Ù1 = Ù2), where any two
conjugate directions are orthogonal.

A visualization of the behaviour of conjugate directions can be based on the so-called
Dupin indicatrix. This is a radial curvature diagram in the tangent plane at a surface
point p. In the principal frame it is given by(r (ã) cosã, r (ã) sinã) with the radial
distancer (ã) = 1 /

ð
|Ùn (ã)|. Of course, the normal curvatureÙn (ã) follows Euler’s

formula eq. (1) , from which one concludes that the indicatrix has an equation of
the form Ù1x2 + Ù2y2 = ± 1. It is a pair of hyperbolas forK < 0, a pair of parallel
lines forK = 0 and an ellipse forK > 0 (see•g. 5 , bottom). The caseK = 0
is degenerate; all directions are conjugate to the principal direction with normal
curvatureÙ1 = 0 . In the other cases, conjugate directions are given by conjugate
diameters of the indicatrix: The tangents at the endpoints of one diameter are
parallel to the other diameter. The tangents at the vertices(± 1/

ð
|Ù1|,0) and

(0,± 1/
ð

|Ù2|) of the indicatrix form the axis rectangle. The diagonals of the axis
rectangle are the asymptotic directions forK < 0 and the characteristic directions
for K > 0 (•g. 5 ).
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Figure 5: Top: The indicatrix at a point p may be obtained by intersecting the surface with
planes parallel to the tangent plane atp. If the cutting plane approaches the tangent plane (for
K < 0 (left) from both sides) and the intersection gets magni•ed appropriately, the limit curve is
the indicatrix. Bottom: The indicatrix is a pair of hyperbolas forK < 0 (left), a pair of parallel
lines for K = 0 (middle) and an ellipse forK > 0 (right). Conjugate directions t 1, t 2 belong to
conjugate diameters of the indicatrix. ForK = 0 , conjugacy degenerates and any direction is
conjugate to the asymptotic directiont 1. For K > 0 (right), the conjugate directions with the
smallest angle are the diagonals of the axis rectangle (characteristic directions).

Rationalizationcan now proceed as follows (see•g. 6 ): Given a reference surface
S, we compute a •eld of tangential frames (pairs of conjugate directions with angle
Ð). There is a choice here in each point due to the symmetry of solutions with
respect to principal directions. The selection has to be done in a consistent manner
over the entire surface. This frame •eld is used as a guiding •eld for an initial
quad mesh based on one of the available techniques from Geometry Processing.
We use the implementation of mixed-integer quadrangulation (MIQ) of Bommes
et al. (2009) in LIBIGL by Jacobson et al. (2018). In the resulting meshM , we
alternately color vertices, say as red and blue ones (•g. 6c ) and take e.g. the red
one as control meshC (•g. 6d ); note that its diagonals follow the edges ofM .
Now C is optimized for constant angleÐ between the diagonals, and the diagonal
meshesD1,D2 for the PQ property. During this optimization, we ensure proximity
to the given reference shapeS as in Tang et al. (2014).

Remark. The characteristic directions on a positively curved surface de•ne a
conjugate curve network which is symmetric with respect to the principal directions.
It possesses a constant angleÐ only for surfaces with a constant positive ratioÙ1/Ù2

of principal curvatures. Principal symmetric curve networks have an appearance
which may be more appealing than the network of principal curvature lines. Good
examples are rotational shapes, in which the latter are rather boring, but the former
are much more interesting (see•g. 18 ). Using results of Schling et al. (2018),
one can easily construct quad meshes which are principal symmetric in a discrete
sense. One has to ensure that each vertex and its four connected neighbours lie on
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(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

00000000000000000

0.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.005

(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

00000000000000000

0.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.0050.005

(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)

Figure 6: Re-meshing a surface, given as a triangle mesh (a), by a PQ mesh with constant angle
60°: (b) We de•ne a pair of conjugate directions with angle60° in each face of the input mesh.
(c) We compute a quad mesh aligned with these directions. This mesh is coloured with blue and
red vertices. As the inset shows, its faces are not planar with high accuracy; planarity of a quad
is measured as the distance of the two diagonals divided by their average length. (d) We take
the mesh formed by the red vertices as control mesh and perform PQ optimization with constant
angle60° and proximity to the reference surface. (e) The result is shown with the checkerboard
pattern of black parallelograms. As the inset shows, now also the white faces are planar with high
accuracy. (f) shows another remeshing result with angle75°.

a sphere. One could then even achieve a constant angle within our framework, by
applying the sphere condition to both diagonal meshesD1,D2 and the constant
angle on the diagonals of the quads in the control meshC. We do not further
elaborate on this, but now turn to that limit case of principal symmetric meshes in
which the mentioned spheres are planes.
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Figure 7: Rotationally symmetric CB patterns with planar white quads and similar black rhombuses.
The constant angle is60° (left), 90° (middle) and 120°(right). Due to the symmetry of these
patterns with respect to the principal directions, these meshes represent surfaces with a constant
ratio of principal curvatures. The constant angleÐ is related to the principal curvatures via
tan2(Ð/ 2) = Ù1/Ù2 and thus the middle surface represents part of a sphere.

Figure 8: CB-patterns which are PQ meshes and exhibit a constant angleÐ: 90° (left), 75°
(middle) and 60°(right).

Asymptotic nets with constant angle.

When we are working with A-nets (discrete asymptotic parameterisations), we apply
the A-net condition, namely planar vertex stars, to both diagonal meshes. Then,
also the CB-patternP is a discrete asymptotic parameterisation, as its edges follow
the corresponding directions inD1,D2. However, for our applications, we do not
needP at all. But we successfully apply the approach to the pair(D1,D2), as we
will see below.

Working with a mesh pair is bene•cial if we want to express a constant angle
or other constraints on the angle. We just have to realize this angle between
corresponding edges ofD1,D2, i.e., the diagonals of the quads in the control mesh
C. Since the asymptotic directions on a negatively curved surface (K < 0) form the
angleÐ with tan2(Ð/ 2) = |Ù1/Ù2|, a constant angle between asymptotic directions
characterizes surfaces with a constant negative ratio of principal curvatures (see
•g. 9 ). Discrete versions have recently been studied by Jimenez et al. (2020), but
our approach is simpler. Note that a constant right angle belongs toÙ1 + Ù2 = 0
which characterizes minimal surfaces. There is a rich literature on discrete minimal
surfaces (see Bobenko and Suris 2008), but the present approach based on diagonal
meshes and orthogonal A-nets seems to be a new concept.
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Figure 9: A-nets with constant angle60° (top), 75° (middle) and 90° (bottom). They represent
surfaces with constant principal curvature ratioÙ1/Ù2 = C with C = ­ 1/ 3 (top), C = ­ 0.58879
(middle) and C = ­ 1 (bottom). The latter surface is a minimal surface. Left: One diagonal mesh
and the associated checkerboard pattern. Right: The diagonal mesh has been used as a basis for
an asymptotic gridshell with constant node angle.

If we have aimed at an A-net with a constant angle, we actually got two of them:
D1 and D2. Only one is taken and then used as basis of asymptotic gridshells in
the sense of Schling et al. (2018).

Rationalization of a negatively curved surface with an A-net is quite straightforward,
and is initialized with a quad mesh that is aligned with the asymptotic directions
of the reference surface. Of course, one cannot expect a constant angle in the
mesh if the reference surface does not have a constant negative ratio of principal
curvatures.

Remark. Surfaces with a relation between their principal curvatures are called
Weingarten surfaces. Among other appealing properties (see Tellier 2020), these
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surfaces possess advantages for panelling with curved panels. As they possess only
a one-parameter family of di!erent curvature elements, su"ciently small panels
can be produced with a reduced number of moulds. Roughly,N panels require
only

ï
N moulds.

Figure 10: Timber model of the A-Net in •g. 9 , bottom. The constant 90° angle allows for
repetitive slot connections of minimum width.

3 Optimization
In the following, we brie‚y discuss the mathematical formulation of the constraints
and how they are solved within an optimization algorithm.

Angle constraints.

Key constraints are those on angles, which are particularly easy to deal with. As
shown in•g. 11 left, the angle between the diagonals in each quad of the control
mesh determines the inner angles of the black parallelogram. The constraint for a
prescribed angleÐ is formulated as

cangle,i =
v i 2 ­ v i 0

ëv i 2 ­ v i 0ë
·

v i 3 ­ v i 1

ëv i 3 ­ v i 1ë
­ cosÐ = 0 , (4)

wherev i 0,v i 1,v i 2,andv i 3 are the four vertices of facei . To simplify this formulation
in the optimization, the diagonal lengthsëv i 2 ­ v i 0ë and ëv i 3 ­ v i 1ë can be taken
from the previous iteration.

Black rhombuses.

A black parallelogram becomes a rhombus when the control quad diagonals have
the same length, i.e.

clength,i = ëv i 2 ­ v i 0ë2 ­ ë v i 3 ­ v i 1ë2 = 0 . (5)

In the optimization, the above two constraints are formulated as energy terms
Eangle =

q |F |
i =1 c2

angle,i and E length =
q |F |

i =1 c2
length,i .
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PQ meshes.

Since the black parallelograms are planar anyway, we have to enforce planarity of
the white quads in a CB pattern. As shown in•g. 11 middle, each vertexv i of
the control mesh has a corresponding white quad which is similar (with the scale
ratio 1:2) to a quad in a diagonal mesh. This quad is formed by the neighbouring
verticesai 0, ai 1, ai 2, and ai 3 of v i . To achieve its planarity, we introduce a normal
vector n i of its plane as an additional variable and ensure that it is orthogonal to
the edges of the quadai 0ai 1ai 2ai 3 (see Tang et al. 2014). To avoid thatn i gets
too small, we enforce it as a unit vector, leading to the term

EP Q =
|V |Ø

i =1

3Ø

j =0

(n i · (aij ­ aik ))2 +
|V |Ø

i =1

(n i · n i ­ 1)2, (6)

where the indexk © j + 1 (mod 4) .

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0v i 0

v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1v i 1

v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2v i 2

v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3v i 3

v iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv i

n in in in in in in in in in in in in in in in in i

ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0ai 0

ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1ai 1

ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2ai 2

ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3ai 3

v iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv i
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Figure 11: Geometric constraints for angles (left), planar white quads (middle) and A-nets (right).

A-nets.

To optimize for a discrete asymptotic parameterisation, the vertices of both diagonal
meshes are required to have planar vertex stars. As illustrated in•g. 11 right, let
b i 0, b i 1, b i 2, and b i 3 be the neighbouring vertices ofv i in the diagonal meshes.
Then a planar vertex star is expressed via a normaln i as

EAnet =
|V |Ø

i =1

3Ø

j =0

(n i · (b ij ­ v i ))
2 +

|V |Ø

i =1

(n i · n i ­ 1)2. (7)

Optimization.

In addition to the terms resulting from constraints, we use a fairness termE fair

as described by Pottmann et al. (2007); Jiang et al. (2020). The •nal objective
function is a weighted sum of the above energy terms,

E = Ú1Eangle + Ú2E length + Ú3EP Q + Ú4EAnet + Ú5E fair ,
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which can be optimized by a Levenberg-Marquardt method. Depending on the
applications, we have di!erent weight parameter settings.

• For a PQ mesh, we setÚ4 = 0 .
• For A-nets, we setÚ3 = 0 .
• When Ú2 > 0 (seetab. 1 ), the black parallelograms are rhombi.

Fig. |V| |F| # var Ú1 Ú2 Ú3 Ú4 Ú5 # it T[s]

•g. 6e 409 360 2454 1 0 1 0 0.1 10 0.3
•g. 6f 427 378 2562 1 0 1 0 0.1 10 0.3
•g. 7 800 750 4800 1 1 1 0 0.1 10 0.8
•g. 8 614 527 3684 1 0 1 0 0.1 10 0.4
•g. 9 1499 1440 8994 1 0 0 1 0.1 10 2.5
•g. 12 1860 1770 11160 1 1 1 0 0.01 10 1.5
•g. 13 787 720 4722 1 1 0 1 0.1 10 1.0
•g. 14 679 606 4074 1 1 0 1 0.1 10 0.8

Table 1: This table gives an overview of the size of optimization problems solved for various
examples in this paper. We also provide the parameter settings and computation time in seconds.

Examples.

CB patterns from planar quads and with a •xed angle are shown in•g. 7 , 8 and 12.
In the latter two •gures, the black faces are rhombuses. This implies that all black
faces are similar (scaled versions of each other). In Architectural Geometry, we
have so far only seen PQ meshes with a right angle (circular and conical meshes),
but there none of the faces has been a precise rectangle. In our CB patterns to
Ð = Þ/2, the black faces are exact rectangles.

Figure 12: CB patterns with planar white quads and similar black rhombuses. The constant angle
is 120° (left), 90° (middle) and 60°(right). Black quads are rhombuses and thus the surface in the
middle is a discrete isothermic surface. The other two surfaces are discrete generalized isothermic
surfaces whose mathematical study appears to be missing so far.

We can also achieve black squares, as in•g. 7 and •g. 12 , middle. These
are discrete isothermic surfaces.Figure 9 shows A-nets with constant angleÐ.
These are discrete surfaces with constant negative ratio of principal curvatures,
Ù1/Ù2 = ­ tan2(Ð/2). In •g. 13 , we illustrate how the angle can be used as a
design parameter.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 13: Angles as a design parameter. A-nets as checkerboard patterns (a,c) and asymptotic
gridshells (b,d). For (a,b), the angle increases radially from the central singularity to the boundaries,
in (c,d) it decreases.

4 Application in Architecture
This chapter will focus on the application of A-Nets in an architectural context.
Speci•cally, we focus ongridshells, •rst developed by Frei Otto in the 1960s
(Hennicke 1974). Otto created doubly curved grids from an initially straight and
‚at grillage of slender timber laths. Most commonly, square or round pro•les were
used for this purpose, as they are able to bend and twist equally in all directions.
Following the asymptotic networks allows us to use tall lamella pro•les instead. The
structural elements follow the paths of constant zero normal curvature and thus do
not require any bending around their strong axis during the erection process.

This new construction method has enjoyed great popularity over the past years, with
international applications in academic and commercial projects (•g. 1 ). Learning
from these built structures, we can identify potentials for design, fabrication,
construction and load-bearing capacity.

4.1 Construction with constant node angles

The following series of prototypes and built structures documents a variety of
constructive solutions for asymptotic gridshells. We focus speci•cally on the
advantages of asymptotic nets with constant angles.
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Timber prototype.

The •rst timber prototype was built at approximately 4x4 m span (•g. 14 ). The
timber laths were assembled on two levels to allow for uninterrupted pro•les of
60x4 mm polar plywood. Additionally, two parallel pro•les were used for each edge
in order to allow a smooth bending process during construction, but ensure high
sti!ness in the •nal structure. Once bent into the •nal position, the two timber
lamellas are joined with shear blocks to act as one beam.

The two levels are connected with simple, square timber studs, which •x the
constant 90° angle on bottom and top and act as rigid connection transferring
bending and torsional moments. This stud could only be •tted if all elements were
bent in their •nal geometry. Consequently, this prototype was erected spatially
using a temporary framework and solid planar edge-beams as supports.

Figure 14: Diagonal mesh and associated checkerboard pattern of an A-Net with constant angle
90° on a Schwarz D minimal surface (top right). The Timber prototype is constructed with a
slightly coarser network (bottom right). We introduce two parallel lamellas to allow for bending
and post-coupling of the slender pro•les. The two families of lamellas are constructed on separate
levels and connected with square studs (left).

Steel gridshell.

The •rst large scale Asymptotic Gridshell (•g. 1 , top) was constructed from straight
1.5 x 100 mm steel strips. The metal strips were •rst slotted together by hand
into ‚at segments, creating a scissor joint at each intersection that allowed to
deform the whole segment into its design shape. The constant90° angles o!ered a
control-mechanism of the design geometry during the bottom-up erection process,
allowing to deform and •x the •nal shape of the double-curved segments without
the need for form-work. Again two parallel lamellas were used which created a
central void at each intersection allowing a simple connection with a single bolt
and repetitive star-shaped washers (•g. 15d ).
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Figure 15: Development of orthogonal steel joints, looking at (a) a simple slotted and welded
connection (b) segmented, reciprocal lamellas, (c) double lamellas on two levels connected by a
square pipe and (d) a double slotted connection with star-shaped connectors. The latter was used
for the construction of the Asymptotic Gridshell.

Asymptotic Urban Roof.

Current research is looking at potentials for large-scale steel and glass construction
to combine the structural bene•ts of double curvature with repetitive and simpli•ed
fabrication of joints, beams and panels. The design of an urban metro station
(•g. 16 ) is based an optimized A-net with constant angle60° (•g. 9 ). In this
scenario, the repetitive joints can be prefabricated and assembled on site with
straight steel segments of varying length. The facade is triangulated through
secondary pro•les that brace the structure and frame the planar glass panels.

Figure 16: Design of an urban metro station using the optimized A-net with constant angle60°
from •g. 9 .

4.2 Angles as a design parameter

While constant node angles provide great bene•ts for the fabrication of asymptotic
gridshells, they also limit their design freedom. In the following, we will introduce
two further projects which deliberately use varying node angles, as means to follow
the structural or transformational behaviour.
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Asymptotic Canopy.

The •rst permanent Asymptotic Gridshell was completed in December 2019 for the
Intergroup Hotel in Ingolstadt (Schikore et al. 2019) (•g. 1 , bottom and •g. 17 ,
right). The surface was designed with a gradual shift of intersection angles from
almost 90° at the top to roughly60° at the bottom, thus creating a structurally
informed topology that would allow for a smooth load-transfer towards the supports.
Each of the four symmetric segments was •rst assembled ‚at and then pulled upside
down to create the funicular design (•g. 17 , left). The stainless steel structure was
built from single 2,5 x 100 mm lamellas (similar to•g. 15a ) with slots of varying
width for each intersection. These individual slots set the correct angle at each
joint and thus aided to de•ne the design geometry before being welded in their
position.

Figure 17: Asymptotic Canopy for the Intergroup Hotel in Ingolstadt. The grid is designed with
a transition from 90 to approximately 60 node angles, thus allowing for a bespoke shape and a
directed load-path. Each segment prefabricated hanging upside down, to form the design geometry.

Asymptotic Umbrella.

The Asymptotic Umbrella (•g. 18 ) is an ongoing research project to be exhibited at
the AAG in Paris. It utilizes the predictable deformation behaviour of lamella-grids
to create a transformable structure. The lamellas are constructed from continuous,
rectangular, hollow GRP sections. All joints are hinged in order to accommodate
the transformation from cylindrical to funnel shape. The design follows similar
geometric principles as our studies in•g. 13 , with node angles decreasing toward
the top for a closed, conical con•guration, and increasing in the unfolded funnel
shape. The umbrella mechanism is actuated by vertical cables, which gradually
open these angles, thus causing the grid to change shape, open up and move
downwards. During this process, the radius at the base remains constant.
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Figure 18: The Asymptotic Umbrella is a transformable structure. It is actuated by vertical cables
which gradually open the angles in the upper part of the grid, causing the umbrella to unfold.

4.3 Conclusion and future research

We have introduced a new concept for the design of constrained quad meshes which
exploits the geometry of the two diagonal meshes of a control mesh. This turns
out to be particularly useful for the control of node angles and shape properties
of quads in the mesh and the associated checkerboard pattern arising through
mid-edge subdivision. In particular, we applied this method to the design of
asymptotic gridshells with constant or controlled intersection angles. We discussed
related developments for the construction in timber and steel, and showed future
applications for large scale and transformable structures.

According to Jiang et al. (2020), the diagonal mesh approach is also a simple tool for
modelling developable surfaces, especially for applications where one needs to deform
them isometrically, i.e., by pure bending. Our ongoing research extends this method
to address the inclusion of material behaviour for architectural panelling solutions.
Moreover, we aim to include structural behaviour into the design process, to inform
the shape and topology of lamella gridshells. The geometry of transformable
structures associated with asymptotic gridshells and their behaviour during the
erection process is another rewarding topic for future research in both theory and
practice.
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