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Abstract
Cable nets are efficient and elegant structures that are pre-stressed to limit their de-

flection under loading. The best known cable net structure is the Munich Olympia

stadium built for the Olympic games in 1972 by Frei Otto and Jörg Schlaich. Frei

Otto believed that the ideal shape for such structures is a minimal surface with

uniform surface tension under pre-stress. However, a minimal surface can only be

approximated by the equal mesh nets used by Frei Otto, but it is possible to produce

a true pre-tensioned minimal surface with a fine net of cables forming a pattern of

curvilinear squares, which includes a net following the principal curvatures of the

surface. Both an analytical and a numerical approach for the form-finding of min-

imal surfaces with a principal curvature net are described. The analytic approach

uses the fact that every minimal surface with principal curvature coordinates can

be expressed by a single function of a complex variable. This is a special case of

the Weierstrass–Enneper parametrisation which uses two functions, but one of them

effectively only controls the pattern of coordinates on the surface. The numeri-

cal approach automatically produces a minimal surface and the principal curvature

coordinates at the same time and can be applied to any minimal surface whose

boundaries are either principal curvature or asymptotic directions, or a combination

of the two. Straight lines and cable boundaries form asymptotic lines and a surface

which is normal to a sphere has a principal curvature direction as its boundary.

Keywords: cable nets, minimal surfaces, principal curvature, differential geometry,

form-finding, conformal mapping
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1 Introduction

Cable nets were pioneered by Vladimir Shukhov in the late 19th century with the

design of a number of tensile membrane structures serving as exhibition pavilions for

the All-Russia Exhibition 1896 in Nizhny Novgorod (Wells 2010). The development
accelerated during the 1950s with the completion of the 1953 Dorton Arena in

Raleigh, North Carolina by architect Matthew Nowicki and engineer Fred Severud

followed by Eero Saarinen and Fred Severud’s 1957 Ingalls Ice Rink in New Haven,

Connecticut; the French Pavilion at the 1958 Brussels World’s Fair by Rene Sarger;

the 1958 Sydney Myer Music Bowl by architect Robin Boyd and engineer Bill Irwin

(Shaeffer 2013). Further developments were made by Kenzo Tange and Mamoru
Kawaguchi with the Yoyogi Arena for the Tokyo Olympics in 1964 (Tsuboi and

Kawaguchi 1966), by Frei Otto and Jörg Schlaich with the 1972 Olympic stadium

in Munich (Tomlow 2016) and by Hopkins Architects and Expedition Engineering

with the 2012 London Olympic Velodrome (Arnold et al. 2011; Wise et al. 2012).

Frei Otto, inspired by Severud’s work on the Dorton Arena, devoted his doctoral

dissertation ‘Das hängende Dach: Gestalt und Struktur’ (‘The hanging Roof: Shape

and Structure’) to cable net structures (Otto 1954). Otto believed that the ideal

shape for a cable net is a minimal or soap film surface with a uniform surface tension

under pre-stress. However it is only possible to approximate a minimal surface with

the equal mesh used by Frei Otto. Equal mesh nets, also known as Chebyshev nets

(Hazewinkel 1988, p. 123), are easy to lay out out flat on the ground to form a grid

of squares before they are raised into position. However it is possible to produce true
pre-tensioned minimal surfaces with a net of cables following isothermal coordinates

on the surface, that is a pattern of curvilinear squares, subject only to the limitation

of the fineness of the grid. It is well known that principal curvature nets on a

minimal surfaces can be arranged to form curvilinear squares which edge length

is equal to a constant times the square root of the magnitude of the equal and

opposite principal radii of curvature. The same applies to asymptotic nets, that is

nets in the directions of zero normal curvature which are at 45° to the principal

curvature directions on a minimal surface. Cable nets are often pre-stressed with
cable boundaries. If the surface is a minimal surface then equilibrium of the cable

shows that its curvature in the plane of the surface (the geodesic curvature) is

constant, while the curvature normal to the surface is zero. Thus the boundary

cable must follow an asymptotic direction on the surface and these asymptotic

curves must have constant geodesic curvature.

Even though cable nets have to be designed to carry load, it is usual to find

their form assuming no load apart from the pre-stress applied using jacks at the

boundaries or under the masts. But before considering such cases, some notes on

the geometry of principal curvature nets in general are given in sec. 2.
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In sec. 3 a pair of surfaces are considered for which the Weierstrass-Enneper

parametrisation (Weierstrass 1866) is derived. The parametrisation maps a point

on a plane to a point on a minimal surface conformally, that is preserving angles

between lines. Two functions of a complex variable are used to define the mapping.

In sec. 4 requirements are imposed so that the coordinates follow the principal

curvature directions and then the surface is defined by just one function of a

complex variable. The relationship between the Gauss map on an unloaded sphere

and a principal coordinate system on a minimal surface is discussed in sec. 5 and

the conditions under which unloaded surfaces other than minimal surfaces can be in

equilibrium under pretension with the cables following principal curvature directions

is examined in sec. 6.

Though analytical approaches may be desirable, there are occasions when numerical

form-finding are more suitable and some examples are presented in sec. 7.

Regardless of approach, finding a minimal surface through a given boundary is

a variation of Plateau’s problem (Douglas 1931; Radó 1933; Harrison and Pugh

2016), but in the case of cable boundaries the boundary shape is determined by

the minimal surface itself.

2 Weingarten surfaces

This paper is primarily about unloaded principal curvature nets which are pre-

tensioned and in equilibrium under zero applied load. However, it is worth digressing

on the geometry of principal curvature nets in general. Throughout the paper,

curvilinear coordinates θ1 and θ2 will be used for the surfaces, which replace the

more usual notation u and v. This enables the use of tensor notation which is

useful for geometry, but especially powerful for considering stresses and equilibrium.

The Peterson-Mainardi-Codazzi equations of any surface can be written

∇1bα2 = ∇2bα1, (1)

in which bαβ are the coefficients of the second fundamental form (Eisenhart (1947)

uses dαβ, and Struik (1961) and Rogers and Schief (2002) use e,f,g) and ∇
denotes the covariant derivative (Green and Zerna 1968). Thus for the case α = 1,

b12,1 − bλ2Γλ
11 − b1λΓλ

21 = b11,2 − bλ1Γλ
12 − b1λΓλ

21, (2)

where

Γλ
αβ =

aλµ

2
(aβµ,α +aµα,β −aαβ,µ) , (3)
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are the Christoffel symbols and aαβ are coefficients of the first fundamental form or

the components of the metric tensor (Eisenhart (1947) uses gαβ , and Struik (1961)

and Rogers and Schief (2002) use E,F,G). Subscript comma is used to denote

partial differentiation.

The conditions for the coordinates on a surface to follow the principal curvature

directions are

a12 = 0, and b12 = 0. (4)

Inserting eq. (4) into eq. (2) yields

(

b11

a11

)

,2
=

a11,2

2a11

(

− b11

a11

+
b22

a22

)

, (5)

and similarly
(

b22

a22

)

,1
=

a22,1

2a22

(

b11

a11

− b22

a22

)

, (6)

for the case α = 2.

The quotients

κI =
b11

a11

, and κII =
b22

a22

, (7)

are the principal curvatures on the surface. Writing

a11 = E, and a22 = G, (8)

we obtain

∂κI

∂θ2
=

1

2E

∂E

∂θ2
(κII −κI) ,

∂κII

∂θ1
=

1

2G

∂G

∂θ1
(κI −κII) ,

(9)

which are equations (3-8) in Struik (1961), if one replaces θ1 and θ2 by u and v.

Let us now introduce the mean curvature, H, the Gaussian curvature, K, and the

radius of the Mohr’s circle of curvature (Nutbourne 1986), R,

H =
κI +κII

2
,

R =
κI −κII

2
=

√

H2 −K,

K = κIκII,

(10)
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so that

(R +H),2

R
= −E,2

E
,

(R −H),1

R
= −G,1

G
.

(11)

The quantities
√

Eδθ1 and
√

Gδθ2 are the spacing between the coordinate curves

on the surface. Thus eq. (11) control the pattern of lines of principal curvature

on a surface.

A Weingarten surface (Krivoshapko and Ivanov 2015) is a surface for which there is

a functional relationship between the principal curvatures, which can be written as

H = H (R) ,

h =
dH

dR
.

(12)

Weingarten surfaces include minimal surfaces, surfaces parallel to a minimal surface,

constant mean curvature surfaces, constant Gaussian curvature surfaces, surfaces

of revolution and many others. Integration gives

logE = −
∫

1+h

R
dR −P

(

θ1
)

,

logG = −
∫

1−h

R
dR −Q

(

θ2
)

.

(13)

Setting the arbitrary functions P and Q to zero,

log

(

E

G

)

=

∫

2h

R
dR = 2

∫

1

R
dH, (14)

and

EGR2 = constant. (15)

These two equations gives a unique pattern of principal curvature lines on a surface.

3 Complex pair of surfaces

Consider a pair of surfaces given by the position vectors

p
(

θ1,θ2
)

= px

(

θ1,θ2
)

ı̂+py

(

θ1,θ2
)

̂+pz

(

θ1,θ2
)

k̂, (16)

and q
(

θ1,θ2
)

= qx

(

θ1,θ2
)

ı̂+ qy

(

θ1,θ2
)

̂+ qz

(

θ1,θ2
)

k̂, (17)
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in which ı̂, ̂ and k̂ are unit base vectors in the direction of the Cartesian axes x, y

and z (Green and Zerna 1968, p. 18).

Now let us stipulate that these Cartesian coordinates are the real and imaginary

parts of the complex analytic functions rx, ry and rz of the complex variable

ζ = θ1 + iθ2, (18)

where i =
√

−1 is the imaginary number, so that

rx (ζ) = px (ζ)+ iqx (ζ) ,

ry (ζ) = py (ζ)+ iqy (ζ) ,

and rz (ζ) = pz (ζ)+ iqz (ζ) ,

(19)

or

r(ζ) = p(ζ)+ iq (ζ) . (20)

Note that the Cartesian components remain complex analytic functions if the axes

are rotated.

Equation (20) imposes some restrictions on the shape of the surfaces p and q,

but we shall see that we require further restrictions if we want p and q to be

minimal surfaces.

The complex derivative,

dr

dζ
=

∂r

∂θ1
=

∂p

∂θ1
+ i

∂q

∂θ1
= p,1 + iq,1

=
∂r

∂ (iθ2)
= −i

∂r

∂θ2
= −i

∂p

∂θ2
+

∂q

∂θ2
= q,2 − ip,2.

(21)

Hence

p,1 = q,2, (22)

and p,2 = −q,1, (23)

which are the Cauchy-Riemann equations (Spiegel 1974, p. 63) so the map r(ζ) is

conformal (angle preserving). Therefore, because p,12 = p,21 and q,12 = q,21, the

surfaces p and q obey the Laplace’s equation (Spiegel 1974, p. 63),

p,11 +p,22 = 0, (24)

and q,11 +q,22 = 0. (25)
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The surfaces p and q share the same tangent plane and unit normal and from

eq. (24) and (25) it can be seen that if unloaded fine grid cable nets were to

be constructed from p and q in which the force density or tension coefficient is

constant, then the cable nets will automatically be in static equilibrium. The force

density is the tension in an element divided by its length (Schek 1974) and therefore

if τ is the constant force density corresponding to constant coordinate increments

δθ1 = δθ2, the forces Ti in the four members i = 1,2,3,4 meeting at a node are

T1 = −τp,1, T2 = τ
(

p,1 +p,11δθ1
)

,

T3 = −τp,2, T4 = τ
(

p,2 +p,22δθ2
)

,

and so adding and setting the resultant to zero gives eq. (24).

What is more, the surface q is the three dimensional Cremona-Maxwell diagram

(Rippmann 2016; Williams 1986) of p and vice versa.

At this point, the grid of cables or coordinate curves will not cross at right angles,

nor will the cable lengths in the two directions be equal. For this to happen, we

need to further stipulate that the scalar product

dr

dζ
· dr

dζ
= 0, (26)

which is two equations since both the real and imaginary parts are equal to zero,

giving

p,1 ·p,1 −p,2 ·p,2 −2ip,1 ·p,2 =

−q,1 ·q,1 +q,2 ·q,2 +2iq,1 ·q,2 = 0,
(27)

from which it follows that E = G in eq. (8) and

p,1 ·p,1 = p,2 ·p,2 = q,1 ·q,1 = q,2 ·q,2 = L2,

p,1 ·p,2 = q,1 ·q,2 = 0.
(28)

Thus θ1 and θ2 form isothermal coordinate systems on the two surfaces in which

the coordinate curves form curvilinear squares (Struik 1961, p. 171) with side

length Lδθα where δθ1 = δθ2 is the small increment in coordinates between the

curves. The size of the curvilinear squares vary from point to point on the surface.

Equations (24), (25) and (28) show that the mean curvature of both p and q

are everywhere zero and they are therefore both minimal surfaces, known as a pair

of adjoin minimal surfaces (Struik 1961; Dierkes et al. 2010). We can obtain a
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further pair, P and Q, of adjoin minimal surfaces by writing

P+ iQ = eiϕ (p+ iq) , (29)

where ϕ is a real angle representing a rotation of the base vectors around the

surface normal. Varying ϕ does not cause lengths on P and Q to change and the

deformation of the surfaces is therefore a pure bending with no stretching. P and

Q are known as associate minimal surfaces of p and q.

The coordinate curves will in general not follow the principal curvature directions

on the surface. For the coordinates to do so, we will need to change coordinates

such that the new coordinates, θ1
′

+ iθ2
′

are the appropriate complex function

of θ1 + iθ1. We shall return to this in sec. 4, but for now, we assume that the

coordinates do not follow the principal curvature directions.

If we write
dr

dζ
=

f

2

(

1−g2
)

ı̂+ i
f

2

(

1−g2
)

̂+fgk̂, (30)

then eq. (26) is automatically satisfied. There is nothing unique about this form;

any three functions of two independent functions f (ζ) and g (ζ) would do provided

that the sum of their squares is zero. Then

p = ℜ
{∫

dr

dζ
dζ

}

, (31)

and q = ℑ
{∫

dr

dζ
dζ

}

, (32)

where ℜ{} and ℑ{} mean the real respectively the imaginary parts.

Equations (30) and (31) are the Weierstrass–Enneper parametrisation of a minimal

surface (Eisenhart 1947; Weierstrass 1866) and it can be shown that all minimal

surfaces can be expressed in this way.

For any given functions f (ζ) and g (ζ), a new function F (g) can always be

introduced such that

f =
d3F

dg3

dg

dζ
, (33)

and then eq. (30) becomes

dr

dζ

dζ

dg
=

(

1

2

(

1−g2
)

ı̂+ i
1

2

(

1+g2
)

̂+gk̂

)

d3F

dg3
, (34)
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which can be integrated by parts three times to give

r =

(

1

2

(

1−g2
)

ı̂+ i
1

2

(

1+g2
)

̂+gk̂

)

d2F

dg2

−
(

−gı̂+ iĝ+ k̂
) dF

dg
+(−ı̂+ î)F ,

(35)

which are the formulae of Weierstrass, (see Struik 1961), and formulae (26) and

(28) of section 3.3 ‘Representations Formulas for Minimal Surfaces’, page 117 in

Dierkes et al. (2010).

4 Principal curvature coordinates

No assumptions has so far been made about the orientation of the isothermal

coordinate system on the minimal surface. It is now time to align the coordinate

system with the principal curvature directions.

First, let

h(ζ) = fg, (36)

and w (ζ) = u+ iv = logg, (37)

where u and v are real. Substituting into eq. (30),

dr

dζ
= h

(

sinhw ı̂− icoshw ̂− k̂
)

= h
(

(sinhucosv + icoshusinv) ı̂+(sinhusinv − icoshucosv) ̂− k̂
)

,

(38)

which again satisfies eq. (21). The unit normal to the surfaces p and q is now

simply

n =
1

coshu

(

cosv ı̂+sinv ̂+sinhu k̂
)

, (39)

which satisfies

n ·n = 1, (40)

and n · dr

dζ
= 0. (41)

Then

d2r

dζ2
= p,11 − ip,12 = q,12 + iq,11 = −p,22 − ip,12 = q,12 − iq,22 =

=
1

h

dh

dζ

dr

dζ
+h

dw

dζ
(coshw ı̂− isinhw ̂) ,

(42)
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and

n · d2r

dζ2
= −h

dw

dζ
n · (coshw ı̂− isinhw ̂)

= −h
dw

dζ

(

cosv ı̂+sinv ̂+sinhu k̂
)

coshu

· (coshu(cosv ı̂+sinv ̂)+ isinhu(sinv ı̂− cosv ̂))

= −h
dw

dζ
.

(43)

Thus if

ℑ
{

h
dw

dζ

}

= 0 (44)

then

p,12 = 0, q,11 = 0, q,22 = 0, (45)

so then there are principal curvature coordinates on p and asymptotic coordinates

on q, that is coordinates in the directions of zero normal curvature.

Equation (44) is the Hopf holomorphic quadratic differential and is equivalent to

equation (30’) and Preposition 5 in section 3.1 ‘Associate Minimal Surfaces’, page

99 in Dierkes et al. (2010).

If eq. (44) holds, then the Cauchy-Riemann equations give

h
dw

dζ
= ℜ

{

h
dw

dζ

}

= c = constant. (46)

therefore

r = p+ iq =

∫

c
(

dw

dζ

)

(

sinhw ı̂− icoshw ̂− k̂
)

dζ. (47)

Unfortunately it is not possible to specify both eq. (33) and (46) at the same

time so one cannot avoid the integration in eq. (47) if seeking principal curvature

coordinates on p.

Equation (47) shows that there is a unique complex function of a complex vari-

able, w (ζ), corresponding to any given minimal surface with principal curvature

coordinates.
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The lengths on the surfaces are given by L in eq. (28) in which

L2 =
1

2

(

dr

dζ

)(

dr

dζ

)

=
c2 cosh2 u

2

(

dw

dζ

)(

dw

dζ

)

, (48)

and () means the complex conjugate.

5 The Gauss map

The Gauss map is the image generated on a unit sphere by the unit normals to a

surface. The coordinate curves θ1 = constant and θ2 = constant on the surface are

mapped to corresponding curves on the sphere. The two surfaces p and q share

the same normal and therefore they share the same Gauss map. The function g (ζ)

in sec. 3 is related to the Gauss map via the stereographic projection. If there are

principle curvature coordinates on p and asymptotic coordinates on q, then, upon

differentiating eq. (39),

n,α =

(

−sinhu(cosv ı̂+sinv ̂)+ k̂
)

u,α +coshu(−sinv ı̂+cosv ̂)v,α

cosh2 u
, (49)

in which α = 1 or 2. Thus

n,1 + in,2 =

(

dw

dζ

)

cosh2 u

(

−sinhw ı̂+ icoshw ̂+ k̂
)

. (50)

Hence, upon comparing with eq. (46),

n,1 + in,2 =

(

dw

dζ

)(

dw

dζ

)

ccosh2 u
(p,1 − ip,2) , (51)

and

N2 = n,1 ·n,1 = n,2 ·n,2 =

(

dw

dζ

)(

dw

dζ

)

ccosh2 u
=

c2

L2
,

n,1 ·n,2 = 0.

(52)

Thus the side lengths, Nδθα, on the curvilinear squares on the Gauss map are

c divided by the side lengths on the minimal surfaces. If the coordinates are

dimensionless, then c and L have the units of length and distances on the Gauss
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map are dimensionless. The principal radii of curvature on p and q are equal to

±ρ where

ρ =
L

N
=

L2

c
=

c

N2
, (53)

which is a special case of eq. (15).

The minimal surfaces p and q can be constructed of unloaded fine grid cable

nets in equilibrium with the cable tensions proportional to L to give a uniform

surface tension. But the Gauss map can also be considered to be a grid structure in

equilibrium, in which case the forces on each of its nodes from its members are the

same as those on the nodes of the minimal surfaces p from its members. This is

because the members on the two surfaces are parallel. But because of eq. (51) the

tensions in one direction have to be replaced by compressions and the magnitudes

of these forces are now proportional to the reciprocal of the element lengths.

Physically, an unloaded anticlastic surface in static equilibrium, which is a saddle-

shaped surface with negative Gaussian curvature, must have both principal stresses

in tension or both in compression. On the other hand, an unloaded synclastic

surface with positive Gaussian curvature must have one tensile principal stress and

one negative. This applies regardless of whether the directions of the principal

stresses and principal curvatures coincide.

The equations of equilibrium (11.1.13) in Green and Zerna (1968, p. 387) reduce

to

∇ασαβ = 0,

aαβσαβ = 0,
(54)

for an unloaded sphere where σαβ are the contravariant components of the mem-

brane stress tensor, and aαβ are again the covariant components of the metric

tensor. These equations are satisfied by

σαβ = ∇αφ∇βφ− 1

2
aαβ∇λφ∇λφ, (55)

subject to φ satisfying Laplace’s equation,

∇α∇αφ = 0, (56)

which is consistent with the pattern of curvilinear squares that one associates with

Laplace’s equation. The gradient ∇φ is in the direction of one or the other of the

principal stresses.
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However, if Laplace’s eq. (56) applies to an entire sphere, the only possibility is

that φ is constant, so there is no stress. Therefore, loads have to be applied to

parts of the sphere, but the minimal surfaces p and q only correspond to the parts

of the sphere which are unloaded. Figure 1 shows the principal stress trajectories

of a sphere loaded with equal and opposite wrenches, that is a combination of a

force and a twisting moment, along the same axis. The axis is eccentric to the axis

of the sphere.

Figure 1: Sphere loaded with equal and opposite wrenches.

The pattern on the sphere is given by

ew =
sinh

βζ −α

2

sinh
βζ +α

2

, (57)

in which the surface coordinates are given by eq. (18) and the Cartesian coordinates

on the sphere are given by eq. (37) and (39). The real constant α controls the

position of the wrenches and if α → ∞ the wrenches are applied at the north and

south poles of the sphere. The complex constant β controls the ratio between the

axial force and the twisting moment.
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After some manipulation, the corresponding minimal surface is given by applying

eq. (47) to produce

p = ℜ











c

β2 sinhα







cosh(βζ)sinhα ı̂+

i(sinh(βζ)coshα −βζ) ̂+

(sinh(βζ)−βζ coshα) k̂

















, (58)

and a small part of the corresponding minimal surface is shown in fig. 2. If

α → ∞ and β = 1 the minimal surface would be a catenoid and if α → ∞ and

β = (1+ i)/
√

2 the minimal surface would be a helicoid.

Figure 2: Minimal surface corresponding to small part of the Gauss map in fig. 1.

If β = 1 then there are equal and opposite axial forces, for any value of α. This

corresponds to a source and a sink on the sphere, or on the stereographic projection

of the sphere. If there is a source X = A and sink at X = 1/A, where A is real, in

the plane Z = X + iY then one can write

θ1 + iθ2 = log
(X + iY −A)

(

X + iY − 1

A

) ,

θ1 =
1

2
log









X2 −2AX +A2 +Y 2

X2 −2
X

A
+

1

A2
+Y 2









,

tanθ2 = −
Y

(

A− 1

A

)

(X −A)

(

X − 1

A

)

+Y 2

,

(59)
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leading to the well known fact that the equipotential lines θ1 = constant and θ2

= constant from a source and sink are circles in the plane. These then map to

circles on the sphere, which in turn means that the lines of principal curvature on

the corresponding minimal surface lie in a plane (Abresch 1987; Tellier 2020).

6 Other unloaded pre-stressed grids in equilibrium with
principal curvature cables or bars

Consider a pre-stressed surface structure s
(

θ1,θ2
)

in equilibrium with a fine grid

of cables in tension or bars in compression which follow the principal curvature

directions. Thus the cables or bars must be parallel to the corresponding lines on

the Gauss map. The forces on the Gauss map will be equal or equal and opposite

to those on in the pre-stress surface if the sphere is to be in equilibrium.

If the coordinate curves are in the principal curvature directions, then s,1 is parallel

to n,1 and s,2 is parallel to n,2. Thus eq. (51) can be generalised to give

s,1 = ρn,1,

and s,2 = χn,2,
(60)

where ρ and χ are the principal radii of curvature of s. Hence

s,12 = ρ,2n,1 +ρn,12 = χ,1n,2 +χn,12. (61)

Scalar multiplying by n,12 gives zero automatically and scalar multiplying by n,1

and by n,2 give

ρ,2 = −(ρ−χ)
N,2

N
,

and χ,1 = (ρ−χ)
N,1

N
,

(62)

and hence

(ρ−χ)(ρ+χ),12
−ρ,2 (ρ+χ),1 +χ,1 (ρ+χ),2 = 0. (63)

This is clearly satisfied by the sphere itself and by

ρ+χ = constant, (64)

which is a surface parallel to a minimal surface. It is also satisfied by a surface

of revolution. Equation (63) means that such surfaces are related to Weingarten
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surfaces, that is surfaces for which there is a functional relationship between the

principal curvatures (Struik 1961).

7 Numerical form-finding of minimal surfaces

Adiels et al. (2018) describe form-finding techniques for a number of types of

surface, but this paper is concerned with minimal surface. Equation (24),

p,11 +p,22 = 0, (65)

is satisfied by a fine grid cable net in which the force densities are constant. Such

a net can easily be form found numerically by using matrix methods or dynamic

relaxation (Barnes 1977).

In order to produce minimal surfaces, an isothermal grid needs to be imposed,

a11 = p,1 ·p,1 = a22 = p,2 ·p,2,

and a12 = p,1 ·p,2 = 0.
(66)

Thus, using eq. (65),

(a11 −a22),11
+(a11 −a22),22

= 0,

a12,11 +a12,22 = 0,
(67)

which means that both (a11 −a22) and a12 satisfy Laplace’s equation. This means

that if

a11 −a22 = 0,

and a12 = 0,
(68)

are ensured at the boundary, then they will be zero everywhere (Williams 2011).

Note that the cables do not have to follow principal curvature directions and

eq. (68) are sufficient.

If a soap film has a boundary which is a thread under tension, corresponding to

a cable boundary for a real minimal surface tent, then equilibrium of the thread

dictates that the curvature of the thread must be constant and lie in the local

tangent plane to the soap film surface. This means that the boundary must be an

asymptotic trajectory with constant geodesic curvature (Williams 2011). If this

is the case, eq. (68) are particularly easy to apply and this was done to produce

the cable nets in fig. 3 in which the grid on the surface follows the asymptotic
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directions for case (a) and principal curvature directions for case (b). The equations

were solved using dynamic relaxation (Day 1965).

(a) (b)

Figure 3: Numerically form found cable nets (bottom, black) with their Gauss map (top, blue)
and the south pole stereographic projections of the Gauss maps (middle, red).(a) Asymptotic net
and (b) Principal curvature net.

The members of the grid are given a constant force density, that is tension divided

by length, and the nodes are allowed to slide along the boundaries to give a constant

tension in the boundary cables. For the structures in fig. 3 it was sufficient to just

keep the boundary tension constant, but for fig. 5 it was necessary to adjust the

boundary tension according to the total length of the boundary for stability. This

corresponds to the fact that the tension in a full circle boundary has to reduce if it

gets smaller, so that a constant tension is unstable.

The asymptotic directions cross at right angles and therefore if the angle between

two cables meeting at a support of the structure itself is less than 90°, then the

curvature of the surface at the support is zero. This is the case for the cable

nets in fig. 3, which can be seen clearly by visual inspection of the corners in the

stereographic projection of the Gauss map where the node spacing tends to zero,

corresponding to zero curvature. The asymptotic directions on the Gauss map

are perpendicular to the directions on the structure itself and therefore the angle

between the boundaries on the Gauss map is greater than 90° is it is less than 90°

on the structure itself, and vice versa.
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On the other hand, if the angle at the support is greater than 90°, then the curvature

of the surface at the support is infinite. A soap film attached to a sphere will slide

sideways until its tangent plane at the boundary to the sphere is normal to the

sphere. This means that the boundary of the corresponding minimal surface will be

a line of principal curvature with constant geodesic curvature. Such a boundary

will be the three dimensional Cremona-Maxwell diagram (Rippmann 2016; Williams

1986) of a cable boundary and vice versa.

Frei Otto made soap film models as a starting point for several of his tensile

structures, many with a loop of thread producing a hole in the surface (see the

model photos in Vrachliotis et al. 2017, pp. 27, 43, 55) and fig. 4 shows a physical

model of such a ‘Frei Otto eye’ produced with a loop of wool. Before the loop is

lifted out of the plane the loop is a pure circle. When it is first lifted there is an

infinite curvature at the support until the angle reaches 90° when the curvature is

finite. Further lifting produces zero curvature at the support.

Figure 4: Physical model of Frei Otto eye.

Figure 5 shows a numerical simulation of the Frei Otto eye with a boundary

approximating to a plane at infinity and lifted such that the angle at the support is

90° to give a finite non-zero curvature. The vertical force at the support can be

calculated by considering the vertical force in the catenoid which the surface tends

to at infinity. The black lines on the surface follow the asymptotic directions and

form curvilinear squares.

Figure 6 is the stereographic projection of the corresponding Gauss map. Figure 7

is an attempt at an analytical version of fig. 6. It begins with the map onto the

complex plane of the stereographic projection,
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Figure 5: Numerical simulation of Frei Otto eye. The black lines on the surface follow the
asymptotic directions and form curvilinear squares. The angle at the support is 90° to give a finite
non-zero curvature.

Z = X + iY = ew =
(1+eπ)4/3 −1

(1+eη)4/3 −1
,

with η =
(1+ i)ζ√

2
.

(69)

The power of 4/3 is there to produce the cusp which can be seen on the right hand

side of fig. 6 and 7. The cusp corresponds to a position of zero curvature on the

real surface, diametrically opposite to the support.

The formula in eq. (69) is augmented by adding a series of dipoles along the

horizontal axis within the eye. A dipole is formed of a source and sink which are

moved closer and closer together and increased in strength so that in the limit

we have an infinitely strong source and sink infinitely close together. However,

the resulting velocity is finite, except adjacent to the dipole. Future work will

entail automatically modifying the strength of these dipoles so that the correct

constant geodesic curvature is achieved on the boundary of the minimal surface.

The geodesic curvature of the boundary on the real surface can be calculated from

the stereographic projection directly. The reverse curvature direction in fig. 6 and 7

arises from the stereographic projection rather than the Gauss map. The surface in

fig. 6 and 7 is outside the boundary, but if the north and south poles are swapped
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in the stereographic projection, all the surface is within the boundary and infinity

becomes a point. However if this is done it is very difficult to see the cusp.

Figure 6: Stereographic projection of Gauss map of numerical simulation of Frei Otto eye.

Figure 7: Analytic stereographic projection of Gauss map of Frei Otto eye.
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8 Discussion

This paper has presented approaches that can be used to find minimal surfaces

with principal curvature coordinate systems forming a grid of cables producing

curvilinear squares on the surface in equilibrium under prestress but no load. The

own weight and imposed loads would then be applied to the structure with the

cables given the appropriate elastic stiffness.

It is shown how the Weierstrass–Enneper parametrisation can be constrained to

map a set of complex points to a complex minimal surface where the real part has

principal curvature coordinates and the imaginary part has asymptotic coordinates.

The formulation is dependent on one complex analytic function which has to be

integrated.

While analytical solutions are beautiful, the complexity of the technique may be

overwhelming. Designing a cable net using the analytical approach requires skills

in complex analysis and conformal mapping that most practising architects and

engineers do not possess.

Alternatively numerical approaches may be used and it has been shown how to

form find pre-stressed cable nets with cables following either principal curvature

directions or asymptotic directions on the minimal surface. Proper implementation

of such techniques, preferably using parallel computation for large cable nets, results

in almost real time-response between input and output, just as for the analytical

approaches.
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