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Abstract
We show a novel method to design a curved crease folding that constructs the edge-

rounded, i.e., filleted, version of a given polyhedral surface. We replace each edge

with a smoothly rounded cylinder and each vertex with a generalised cone, such that

the surfaces joined through curved creases form a single developable surface with

possible cuts at the singular cone apices. Because the curved crease can be explicitly

computed from the isometry of corresponding line segments for given locations of

the cone apex in 2D and 3D, our problem reduces to identifying the locations of the

apices. We characterise the conditions for the apex positions and provide a numerical

scheme to find the apices for the given mesh by solving a nonlinear optimisation

problem. In general, the rounding of edges reduces the surface area, so the resulting

curved folded surface is not isometric to the original polyhedron; in particular, the

surface is not guaranteed to be foldable from a single piece of uncut paper if applied

to a developable polyhedral surface. We solve this problem by computing consistent

material loss caused by rounding radii.
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1 Introduction

Folding along a prescribed pattern of curved creases on a thin sheet of material

creates a 3D shape composed of elastically bent surfaces connected through curved

hinges. The folded forms act as hybrids of bending active shells and folded plate

structures and have potential applications in architectural design due to their

benefits in fabrication (Maleczek et al. 2016, 2020; Koschitz 2019).

However, finding patterns that fold or approximate a given target shape is challenging

due to the highly constrained geometry of the folds. As such, it is an active area of

research. See Demaine et al. (2015) and Koschitz (2016) for reviews on curved

crease designs. Note that there are different ways to prescribe target 3D shapes,

which result in different shapes and structures: Chandra et al. (2015) use polyhedra

as the target shape and obtain their approximation through smoothing, and Jiang

et al. (2019) use multiple curved pleats to approximate given surfaces.

Figure 1: Illustration of the proposed design pipeline and the folded result.

In this paper, we show a method to design a curved crease folding from a given

polyhedral surface, such that the folded shape represents the edge-rounded, i.e.,

filleted, version of the polyhedral surface (fig. 1). The input polyhedron can specify

the overall shape of open and closed shells. Each vertex of input polyhedron will

become a dimple surrounded by a closed curved crease, which works as a structural

rib. Our method can be interpreted as a generalisation of some existing artworks

of curved folding; e.g., Mosely (2002) computes modular origami from a rounded

cube with circular dimples at the corners, and Mundilova (2019a) computes similar

systems for regular polyhedra. Our method can be applied to non-regular (but

not arbitrary) polyhedral surfaces. In addition, we characterise conditions for our

construction to be applicable and conclude that not all polyhedra can be converted

into such a curved folded design with our method.
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The overview of our design approach consists in the following steps:

1. we first replace each edge of the polyhedron with a smoothly rounded cylinder

and

2. we replace each vertex by a general cone meeting the incident cylinders and

faces with curved and straight creases respectively, such that the developability

is maintained at the creases. This further decomposes into two steps:

(a) For each vertex, we first locate the positions of the apex in 2D and 3D.

A desirable location results in a collection of valid, non-self-intersecting

patches whose tangent continuous crease curves are in a valid range.

(b) We then compute the curved crease explicitly from the isometry of corre-

sponding line segments using the length constraint given by Mundilova

(2019b).

In sec. 2, we explain the construction process of step 2b to identify conditions

for desirable positions of apices in 2D and 3D. Thus our problem reduces to

identifying the locations of apices (step 2a) according to these constraints. The

intersection of valid regions corresponding to the identified conditions may not exist.

In particular, we show that we cannot apply our construction to saddle shaped

vertices as characterised in sec. 2.5. We numerically solve a non-linear constrained

optimisation problem from the given conditions to locate positions of apices; the

details of this process is described in sec. 3.

In general, the rounding of edges reduces the surface area, so the resulting curved

folded surface is not isometric to the original polyhedron. In particular, even if the

original polyhedral surface is developable, the resulting curved crease surface is in

general not closed around the cone apices. In sec. 4, we show the constraints for the

valid rounding radii used in step 1 so that the resulting surface is also developable

when applied to an originally developable surface. We solve this problem as a linear

constrained optimisation problem for a given general polygonal mesh. In particular,

we prove the existence of a consistent edge-rounding and cone apex construction

for a limited class of polyhedral surfaces, namely, a conical convex mesh (sec. 4.4).

We implemented our construction method including the optimisation as a component

for Grasshopper, so the designer can interactively design curved crease folding by

modelling an initial mesh and adjusting other design parameters. Section 5 shows

how the parameters in each process affect the results. Furthermore, we show design

variations using our methods that have potential architectural applications.
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2 Finding Curved Creases between Cylinders and Cones

2.1 Computation

In our design, we fold right circular cylinders into cones with specified apices. The

following computations are a special case of the formulas developed in Mundilova

(2019b) to determine the crease curve between a given developable surface and

cylinders or cones with given ruling direction or apex, respectively.

The main idea is that the crease curves can be computed only by “fitting” the

lengths of the rulings of cylinders and cones. Let C(s) with s ∈ [0,smax] denote

the base curve of a cylinder, i.e., a planar curve that lies in a plane perpendicular to

the ruling direction R, see fig. 2. Without loss of generality, we assume C(s) to

be an arc length parametrised curve in the xy-plane and R = (0,0,1). If we unroll

this cylinder into the plane, let c(s) denote the straight line corresponding to C(s),

i.e. c(s) = (s,0), and r the ruling direction in the development, r = (0,1). To keep

the isometry between the cylinder and its development, c(s) is perpendicular to

r and the parametrisation speeds of C(s) and c(s) need to match. The distance

between a crease curve F(s) and the curve C(s) must be the same as the distance

between its developed counterpart f(s) and c(s), respectively. Therefore, we make

the ansatz for the parametrisation.

F(s) = C(s)+ l(s)R and f(s) = c(s)+ l(s)r.

R

F(s)

V

C(s) c(s)

v

r

f(s)

Figure 2: A curved crease between a cylinder and a cone and its development.
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Now, for given predefined positions of apices V and v in 3D and in the development,

respectively, the length of every cone ruling, i.e. the distance from a point on the

crease to the apex, must be equal in 3D and in the development, so

|F(s)−V|2 = |f(s)−v|2.

Thus we obtain

l(s) =
1

2

|v−c(s)|2 −|V−C(s)|2

(v−c(s)) ·r− (V−C(s)) ·R
. (1)

For V = (Vx,Vy,Vz) and v = (vx,vy), this simplifies to

l(s) =
1

2

|v−c(s)|2 −|V−C(s)|2

vy −Vz

.

The length is computed if vy −Vz Ó= 0 and locates the crease curve on the surfaces

and in the development. However, there are four possible ways to combine the

cylinder and the cone patches, and only two of them create a developable surface

(see fig. 3).

Figure 3: The two developable combinations of a curved crease between a cylinder and a cone.

Therefore, we need to carefully choose the intended developable combination. In

our construction we want to choose

• the cone patch between the crease curve and the apex

• the cylinder patch from the crease curve in −R direction,

where R is oriented toward the incident vertex of interest.
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In the following subsection, we will argue when this combination is “valid”. Valid

combinations of surface patches are characterised by the contraction property: the

Euclidean distance in its folded state in 3D is shorter than or equal to the geodesic

distance along the folded surface, or the Euclidean distance in its development,

where the equality is satisfied when there is no crease between the points. In

addition, we identify conditions that restrict the crease curve to a range along each

cylinder, i.e., 0 ≤ l(s) ≤ lmax.

2.2 Valid surface patch combinations and valid range

The numerator and the denominator of eq. (1) have both geometric interpretations

that are linked to the valid surface patch combination and valid length. Note that

the valid patch condition is a necessary condition for the folding to exist (if not

satisfied, there is no way to put creases in the correct direction), while the valid

range condition is relative to the position of the base curve defined (if not satisfied,

the computed length will be negative and thus the crease go over the base curve).

The latter will be particularly important for the implementation.

Valid surface patch combination

The denominator compares the heights of the apices measured from the base curve

in its development and in the folded state. This is equivalent to the difference in

distances between a point along the ruling and the apex, when the point approaches

infinity in −R direction. For the points on the valid patch, every intermediate

difference is positive due to the contraction property. Therefore, this expression is

also positive in the limit.

Theorem. A valid patch combination is characterised by the sign of D := vy −Vz

and undefined for D = 0. In particular, a valid combination with the conical part

containing the apex is the cylindrical part in −sign(D)R direction.

Proof. Consider the overlay of a cross section through the plane spanned by V,

C(s) and R with the development such that c(s) and C(s) coincide with the

origin, and the ruling directions r and R are aligned, see fig. 4. We parametrise

the points on the ruling through c(s) and C(s) by b(t) = tr and B(t) = tR. Then

Dt = |v−b(t)|2 −|V−B(t)|2 = |v|2 −|V|2 −2t(v ·r−V ·R) = |v|2 −|V|2 −2tD.

Note that Dt indicates whether the distances between points on the ruling and the

apex are shortening. As Dt is linear in t and D Ó= 0, it changes sign at t0 = |v|2−|V|2

2D
.

We distinguish between two cases:
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• If D > 0, then Dt > 0 for all t < t0. The contraction happens for points below

the crease curve, i.e. the valid cylindrical patch has ruling direction −R.

• If D < 0, then Dt > 0 for all t > t0. The contraction happens for points above

the crease curve, i.e., the valid cylindrical patch has ruling direction +R.

R

V

C(s)

r

c(s)

v

R = r

C(s) = c(s)

v

V

vy
Vz

Dt < 0

Dt = 0

Dt > 0

Figure 4: Figure illustrating proof of theorem .

Valid range

As described in sec. 3, we set the base curve at the midpoint of the rounded edge,

so l(s) ≥ 0 for all s ∈ [0,smax] ensures that the creases from two incident vertices

of a rounded crease will not affect each other. Furthermore, we upper bound the

length of the boundary rulings to not exceed the intersection of cylinders around a

vertex.

For valid surface patch combinations, the denominator is positive and thus the

sign of the length function l(s) is determined by the numerator. The numerator

is positive, if and only if the distances between the base curve and apex contract

after folding, i.e., l(s) ≤ 0 if

|v−c(s)|2 −|V−C(s)|2 ≥ 0.

We can rewrite the upper bound l(s) ≤ lmax as

|v− t|2 −|V−T|2 ≤ 0

where t = c(s) + (0, lmax) and T = C(s) + (0,0, lmax). Therefore, the distances

between the apices and the upper bounds need to expand during folding to prevent

the crease from escaping the intended range.
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Geometric interpretation

For a given developed apex v, let SC be the sphere with center C(s) radius

|v − c(s)| and ST the sphere with center T radius |v − t(s)|, see fig. 5. We

indicate the interior of a sphere S by S+.

c(0)

r

t
v

T

V

C(0)

R

SC

ST

ε+

Figure 5: Given a developed apex, the desirable region for the spatial apex for 0 ≤ l(s) is S
+

C
∩ε

+

and for 0 ≤ l(s) ≤ |c(0) − t| it is S
+

C
\S

+

T
.

An apex V satisfies the valid patch condition, if it lies in the half space defined by

ε+ : z < vy. Moreover, an apex V satisfies the valid range condition, if it lies in

the region S+
C

or S+
C

\S+
T

, respectively.

Therefore, for a proper position of the base curve, the intersection of conditions

can be represented by V ∈ S+
C

∩ε+ or V ∈ S+
C

\S+
T

∩ε+ = S+
C

\S+
T

.

The intersection of all valid spaces for good candidates along the points of a

base curve lies in the interior of ε+, which we include as a constraint for the

later described optimisation. The intersection of the spherical location constraints

along the base curve is approximated by taking the intersection of valid regions

corresponding to the boundary and at center points of the curve.

2.3 Preventing self-intersection

In addition to the valid patch and valid range constraints, an improper choice

of the apex V can cause intersections between the cylinder and cone. Consider,

for example, the construction of a crease curve on a cylinder, whose base curve

is a half of a circle, for an apex lying outside the cylinder as in fig. 6. Directly

applying the above-mentioned geometric construction yields a self-intersection of

the paper when the ruling emanating from the apex goes past the point of tangency

as the crease curve wraps around the cylinder. At the points of tangency, the
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rulings emanating from the apex transition from the convex to the concave side

of the cylinder, and thus the crease assignment changes between mountain and

valley while passing through complete 180° folding. Intrinsically, this can be also

observed as the crease curve having an inflection point at the transition point. This

is because the convexity or concavity of the crease curve and its position w.r.t. the

current cylinder patch side corresponds to the sign of fold angles of the crease (see

Demaine et al. 2015).

Locating such a transition point is equivalent to locating the shade line of the

cylinder when we put a point light source at the cone apex. Therefore the target

cylinder region needs to be constantly lit or shaded with respect to the light

source. Denoting the surface normals of the cylinders along C(s) by N(s), the

non-intersection condition reads

(V−C(s)) ·N(s) > 0 for all s ∈ [0,smax] or,

(V−C(s)) ·N(s) < 0 for all s ∈ [0,smax] (2)

For each rounded crease, this determines the feasible regions for the candidate apex

as in fig. 6 right (each component corresponds to plus or minus sign).

✡✡✣N(0)

❏❏❫
N(smax)

− +

Figure 6: (a) Curved crease with self-intersections. (b) The development of the self-intersecting
crease. (c) Top view of admissible and forbidden regions for the location of the 3D apex (blue and
red, respectively) for given cylindrical patch.

In the regions of admissible points, the non-intersection condition are obtained

by taking the intersection of admissible regions for all incident rounded edges of

an vertex. This is equivalent to taking the apex consistently on the front normal

side or back normal side measured from any point on the surface. Figure 7 shows

an invalid apex position, which causes intersection at either of incident rounded

edges. The existence of such a region depends on the types of vertices as we

illustrate in sec. 2.5. We potentially get two portions of the solution space on

the outside and the inside of the vertex, corresponding to whether a light source

constantly illuminates and shades the surface, respectively (see fig. 8). However,

when combined with the valid patch condition, at most one of these components is

feasible as explained in sec. 2.5.
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Note, that for the above observation, we did not need C(s) to be circular, only

convex or concave.

Figure 7: An apex with self intersection. Note that the intersection happens at the rounded
creases.

Figure 8: Illustration of the two admissible regions of a vertex.

2.4 Tangent Continuity

In our design, we are rounding edges of polyhedral surfaces with tangent continuous

cylinders. Therefore, we are ultimately interested in crease curves between tangent

continuous combinations of cylinders, planes and cones or triangles, respectively.

To prevent possibly undesirable kinks in the crease curve, we require the crease

curve to be tangent continuous in the transitions between every cylinder and plane.

139



R. Maleczek, K. Mundilova, T. Tachi

Suppose we have rounded the edges adjacent to a vertex, developed them succes-

sively into the plane and fixed an apex in space and development, see fig. 9. When

we transition from a cylinder to an adjacent plane τ , this plane is the tangent plane

of the cylinder at the transitioning ruling by construction. Furthermore, the tangent

of the crease curve is the intersection of τ and the tangent plane of the adjacent

cone. As the development of the cylinder and cone preserves the angles between

the tangent and the rulings, we see that the tangent is the unique extension of the

crease curve from the cylinder to the plane.

v
τ

τ

τ ′

Figure 9: Vertex with open development whose 2D apex is determined as the center of rotation
transforming τ Ô→ τ

′.

As we progress on the cylinders and planes around a vertex, we obtain tangent

continuous crease curves. If the development closes up, i.e., the rounded surface

is developable, the crease curve closes up for free due to the imposed length

constraints. However, if the development has a gap due to an angular defect, we

need to impose further constraints to guarantee a closed and tangent continuous

curve.

Suppose we started the unrolling with a planar patch τ and there is a gap between

the last cylinder and τ . Let τ ′ be the copy of the first plane oriented to be attached

to the last cylinder. For consistent tangent continuity, we ensure that any point

along the crease embedded on τ and the corresponding crease on τ ′ have the same

distance to the developed apex. Therefore, this developed apex needs to be the

center of the rotation transforming τ into τ ′ in plane, uniquely determining the

developed apex.

Note that the above construction can be generalised to other tangent continuous

and in the development open surfaces when folded tangent continuously into a

cone.
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2.5 Feasible apex directions

We characterise the feasible regions for V given by the intersection of constraints

for each vertex, namely the valid patch and the non-intersection conditions. We

omit the valid range condition because we can move the base curve sufficiently far

away from the apex, as we consider each vertex separately. In addition, we focus on

a simplified necessary condition for those conditions under an assumption described

below, which is also sufficient in the limit case with rounding radius approaching

to 0.

Let U denote the original vertex position and Ri the direction of each incident

edge i, oriented towards the current vertex, with its development ri. Similarly, we

use a subscript to identify the base curve Ci(si) and ci(si) for each edge. Here,

we assume that the height of the developed apex position is smaller than or equal

the height of the original vertex position, i.e., (vi −ci(0)) ·ri ≤ (U−Ci(0)) ·Ri.

We conjecture that the assumption is always true for our construction for non-

developable vertices with consistent material loss due to the uniqueness of the

developed apex positions derived from the tangent continuity constraint (sec. 2.4)

together with the material loss (sec. 4).

The intersection of the valid patch conditions (v−ci(0)) ·ri − (V−Ci(0)) ·Ri > 0

is contained in (U − Ci(0)) · Ri − (V − Ci(0)) · Ri > 0. Using D := V − U, the

condition is represented as

D · (−Ri) > 0. (3)

Solving eq. (3) is equivalent to finding a plane of normal D passing through U

such that all adjacent faces lie on one side of this plane. An important consequence

is that the construction does not work for a saddle vertex, i.e., a vertex without such

a plane. Note that while the sum of incident face angles of a saddle vertex needs is

more than 2π and thus has negative integral curvature, not all negative vertices

are saddles. For example, consider a negative vertex corrugated to approximate a

convex vertex. In addition, since a developable vertex, i.e., a vertex whose sum of

sector angles is 2π, folds to a half plane either by popping up or down as shown in

Abel et al. (2016), it is always possible to find a direction D satisfying eq. (3).

In addition, we sample the non-intersection conditions given by eq. (2) at the

extrema s = 0 for each edge, where the surface normal equals the face normal

Ni−1,i between consecutive edges i−1 and i. Because the extremal point Ci(0)
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and U are both on face i−1, i, eq. (2) yields

D ·σNi−1,i > 0 for all i−1, i, (4)

for either σ = ±1.

Note that at most one of the signs σ can be satisfied. The half-plane discussion

given from eq. (3) predicts the correct candidate of σ as follows. Consider the

solid angle Ω of the vertex on the front side defined by Ni, then the back side has

solid angle of 4π − Ω. Because of the half-plane property, the solid angle of the

vertex on D side needs to be smaller than 2π. So, we choose σ = 1 if Ω < 2π, and

σ = −1 if Ω > 2π.

We call the direction D computed from both eq. (3) and eq. (4) the vertex normal

(fig. 10). In sec. 3.1, we start our computation by constructing the normal from

given edge directions and face normals. Once a valid normal is found, the vector

can be arbitrarily scaled to find other candidates for apex positions. Because the

effect of rounding becomes relatively small by scaling up the vector, there is a

sufficiently distant position of apex along the normal that creates a valid folding.

−D1 −D2

Figure 10: (a) Conical vertex with two vertex normal candidates D1 and D2. Note that D1

computed as the average of face normals do not satisfy eq. (3), while D2 is a valid vertex normal,
the normal plane to which bounds a half space containing the adjacent faces of the vertex. (b)
Saddle shaped vertex.

3 Finding Apices

For every interior vertex of the mesh, we solve an optimisation problem to find the

location of

• the apex V, if the development is open or

• the apices V and v, if the development is closed,

that fold the incident cylinders and planes along tangent continuous curves into
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cones and triangles. We implement the constraints collected in sec. 2 to avoid

invalid surface patch combinations and intersections.

3.1 Vertex normals

Before we start the optimisation, we determine a normal direction D of the vertex

as explained in sec. 2.5 through optimisation; we later locate the initial apex on

the computed normal. We solve eq. (3) and eq. (4) by maximizing the minimum

dot product of a unit vector with the adjacent edge directions −Ri and face normal

directions σNi.

Variables: The variables are the three coordinates of the vertex normal and a scalar

b which is going to be the lower bound that we maximise.

Equality constraint: To prevent unboundedness of variables, we keep D ·D = 1.

Inequality constraint: We bound D ·Ri ≥ b and D · (σNi) ≥ b for every adjacent

edge and face.

Objective: We maximise the lower bound b.

Initialisation: As an initial guess, we take the normalised mean over all edge

directions and oriented face normals.

3.2 Optimisation set-up

To locate the apices, we solve a non-linearly constrained optimisation problem.

We use hard inequality constraints given from sec. 3 and minimise the objective

function to achieve regularity. Specifically, we sample the quadratic inequality

constraints resulting from the valid range condition, by evaluating the base curve

at sampled points, e.g., at the beginning, middle and end of a cylindrical arc. For

every incoming edge, we let C(s0), C(s1) and C(s2) denote the points on the

central circle of the cylinder corresponding to the start, middle and end parameters,

and c(s0), c(s1) and c(s2) denote their developed locations. Let furthermore Ti

with i ∈ {0,2} be the intersection at the start and end parameter of the cylinder

with the neighbouring cylinder and Ri the ruling direction towards the vertex. The

corresponding developments are again indicated by lower cases.

Variables: The variables are the three coordinates of V and the two coordinates

of v if the development is closed.

Inequality constraints: For every adjacent edge, we add five quadratic and two

linear inequality constraints, namely:
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• We require that the developed height is larger than the spatial height, i.e.,

(V−C(s0)) ·R ≤ (v−c(s0)) ·r.

• We require that the current combination for (V,v) lies in the respective

spheres S+(si) at the three parameter values, i.e.,

|V−C(si)|
2 ≤ |v−c(si)|

2 for i ∈ {0,1,2}.

• We require that the lengths do not exceed the distance between the base

point to the intersection of cylinders, i.e., l(si) ≤ |Ti −C(si)| for i ∈ {0,2},

or equivalently,

|v− ti|
2 ≤ |V−Ti|

2.

• We linearise the rounding depicted in fig. 6 by a plane through C(s0), C(s2)

and T0 or T2. We believe that this is not too constraining as candidates

close to the cylinders are not very desirable. This yields

(V−T0) ·σNe > 0 where Ne =
(C(s2)−C(s0))× (T0 −C(s0))

|(C(s2)−C(s0))× (T0 −C(s0))|
.

Furthermore, for every adjacent face, we want the vertex to lie on the correct side

of the faces to ensure non-intersections as described in sec. 2.3. This amounts in

(V−Ti) ·N > 0,

where Ti is the intersection of cylinders in the current face.

Initialisation: We initialise the spatial apex V with a user specified point P =

V+dD on the vertex normal, where d > 0 is the depth along the vertex normal. If

the development is closed, we initialise v as the intersection p of the central rulings

of two consecutive developed cylinders.

Objective: We use the objective for regularisation. Depending whether the

development is open or closed, we minimise

min
V

(V−P)2 or min
(V,v)

(V−P)2 +(v−p)2 .

This objective function tries to keep the original depth d; fig. 11 shows the results

using different depths.
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Figure 11: Results for two different depths.

4 Consistent Material Loss

By edge rounding, the intrinsic distance between adjacent faces gets closer. So

the target polyhedral surface may be understood as the folding of the “shrunk”

version of the polyhedral surface. However, it is not always possible to define such a

“shrunk” paper if the resulting material loss for each rounded edge around a vertex

is not consistent. An arbitrary material loss around the vertex ruins the consistent

disk topology of the original sheet of paper, leaving a non-fillable hole around the

vertex.

In this section, we seek out the consistent material loss that allows the “shrunk”

polyhedral paper to fold into the rounded and curved-creased target shape without

cutting. In particular, when starting from a polyhedral surface with developable

vertices, e.g., an origami tessellation, this consistency ensures that the curved crease

version can still be made from a single sheet of paper without any cuts.

4.1 Material loss

First, we compute the material loss when rounding an edge with a right circular

cylinder (fig. 12). Let us denote the half angle between the adjacent surface

normals by γ and the radius of rounding by r. Then the length a of the rounded

edge and the original length A are

a = 2rγ and A = 2r tanγ.
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We call w = A−a the material loss induced by rounding an edge. In the following

process, we first compute a consistent amount of material loss, which conversely,

determines the radius of rounding. For given w and γ, the remaining quantities

read

a =
wγ

tanγ −γ
, A =

w tanγ

tanγ −γ
, r =

w

2(tanγ −γ)
.

r

A
2

a
2

2γ

γ

Figure 12: Illustration of the material loss induced by rounding an edge.

4.2 Consistency Condition

The main idea is as follows. Consider that if we walk on the surface around a vertex

in the direction perpendicular to the adjacent edges by the amount of material

loss, we need to end up at the same point we started from (fig. 13). This forms

a closed polygonal cycle around each vertex. For each polyhedral edge, we can

draw a rectangular region (coloured green in fig. 13) between the corresponding

congruent edge of the cycles on both ends. The material loss is equivalent to

contracting these cycles to points and rectangles to segments, where points and

segments correspond to vertices and edges of polyhedral sheet of paper that is then

folded to a curved crease folding.

If the original polyhedron is developable, the construction of the polygonal cycle

perpendicular to the polyhedral edge is equivalent to drawing a reciprocal diagram

on polyhedral the development (see fig. 14). In particular, the edge graph needs

to be a spiderweb, i.e., there exists a positive edge-length reciprocal diagram. Our

construction creates such a reciprocal diagram intrinsically on a polyhedral surface,

so the method can apply to any polyhedral surfaces.
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Figure 13: Developable tessellation with contracting cycles and regions before and after contraction.

Figure 14: Computed material loss on the edges of a chicken wire and Miura-ori tessellation and
the resulting rounding.

4.3 Optimisation set-up

The consistent material loss is given as the following linear programming problem.

Variables: We locate the contracting regions by identifying the cycle around the

vertex. The corner of the cycle on sector i can be represented by the distances w−
i

and w+
i from incident edges of the sector.
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For every interior edge between sectors i and j, the two variables w−
i and w+

j

correspond to the material loss on two sides of edges, summing up to the material

loss of the edge w = w−
i + w+

j . Here, we used the notation based on half-edge

data structure: for a sector angle αi of a vertex, we let w+
i denote the variable

associated with the incoming adjacent oriented edge and w−
i the variable associated

with the outgoing adjacent edge, see fig. 15.

Furthermore, we introduce a variable b for the lower bound that we are going to

maximise.

αi

αj

w−

i

w+

j

w−

j

w+

i

uij

w−

i

w+

i

w+

j

αi

Figure 15: Preliminary notation for constraints along vertex.

Linear equality constraints: Along every vertex, the perpendicular widths should

close up. For every adjacent face, we set the widths uij along the quad to be the

same, see fig. 15. This results in the linear equality constraint

(

w+
i +w−

i cosαi

) 1

sinαi

=
(

w−
j +w+

j cosαj

) 1

sinαj

.

Linear inequality constraints: Before we start the optimisation problem, we

compute the maximal rounding width for every edge and upper bound the sum of

the widths of two opposite half edges by this maximal rounding loss. Furthermore,

we require the widths wi > b.

Objective function: We maximise b subject to the above constraints. The solution

is feasible, if b > 0.
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4.4 Conical Convex Mesh

In the special case of conical convex meshes, we can construct the consistent

material loss along vertices and location of apices, see fig. 16. Conical meshes are

characterised by having faces tangent to a cone of revolution whose axis is the

intersection of the bisectors of two neighbouring faces. This in particular implies,

that conical meshes have a family of constant face offsets whose vertices lie on

the axes of the tangent cones. We use the offset mesh to construct the consistent

material loss and the axis as the vertex normal to locate the apex.

v = u′

pi

Pi

V

Figure 16: Illustration of the construction of consistent material loss and apex location.

Suppose we fix an offset distance and project the faces perpendicular to the original

faces. This locates the contracting regions, from which we compute the rounding

applied to the original mesh, so the offset mesh is the piece of paper we fold.

For this material loss, we find good candidates for apices on the axis. By tangent

continuity condition, the developed apex corresponds to the vertex of the offset

mesh. If we intersect the common lines of the cone and the offset faces with a

plane perpendicular to its axis, we find that the intersection points pi lie on a circle

of radius r with center on the axis. If this plane is sufficiently far away from the

apex, we can find a point on the axis whose distance to the corresponding points

Pi on the original surface is again r.

5 Design Examples

We implemented our construction method as a component for Grasshopper to

create an interactive design system. The user specifies the input mesh, the preferred
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rounding radii, preferred depth of apex, which are used as the initial conditions for

the optimisation. We implemented the component in C# using ALGLIB (Bochkanov

2020) for optimisation using Augmented Lagrangian (AUL). Furthermore, we used

the half edge data structure of Plankton (Piker and Pearson 2013) for mesh

operations.

Figure 17: Rounded Icosahedron with different apex depths.

Figure 17 shows how different initial depth of apices affect the results for the

curved crease models created from a regular icosahedron. Figure 19 shows the

method applied to a low resolution version of Stanford bunny. Note that at the

saddle points, it is not possible to locate the normal and thus the apices as described

in sec. 2.5. Figure 18 shows a curved folded origami from one piece computed

from a folded shape of a part of origami tessellation by Ron Resch. Finally, fig. 20

shows a design of a shelter using our system. We plan to investigate a fabrication

process for realizing shell structures through bending sheet materials based on our

scheme in future.
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Figure 18: Rounded version of Ron Resch’s tessellation.

Figure 19: Front and back of the Stanford bunny with computed with our Grasshopper component.
Notice that only non-saddle shaped vertices can be turned into curved creases.
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Figure 20: Curved origami based shell structure and folded model.
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