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Abstract
In this paper, we present a novel design method of rigidly foldable origami com-

posed of panels with uniform thicknesses. Our design is based on quadrilateral-

transformable mesh composed of degree-4 vertex with equal opposite sector angles,

forming a family of corrugated surfaces that folds flat. We apply thickness to such

a rigidly foldable surface by extending the axis-shift method to degree-4 vertex with

equal opposite angles. Using our method, each panel ends up having uniform thick-

ness.

We investigate the necessary and sufficient conditions on the pair of opposite an-

gles and the thickness ratio for each saddle-like vertex to maintain the kinematics

after thicknesses were applied. We construct parametric design models based on

the derived constraints and explore the design space. The design examples of trans-

formable structures are potentially applicable to architectural design. The resulting

structures efficiently fold up to completely flat states with 180° fold angles, wherein

the total thickness is the sum of the thicknesses of overlapping panels. This also

allows for fabrication by first cutting out each panel and subsequently assembling

them in the flat-folded state.

Keywords: origami, thick rigid origami, spatial linkage, discrete Voss surface
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1 Introduction

Rigid origami, which is the origami model composed of rigid panels and hinges,

is useful for various engineering purposes, especially for designs of transformable

architecture. Although origami models are mathematically considered to have a

zero-thickness surface, this is no longer true when applied to physical mechanisms.

Especially, in the design of architectural space, we need structures composed of

thick panels or composite three-dimensional structure with a finite volume to bear

gravity and other loads as well as to insulate against heat, radiation, sound, among

others. Adding thickness can alter the kinematics of the rigid origami; therefore,

several approaches are proposed to achieve thick rigid origami (Lang et al. 2018;

Hoberman 1988; Tachi 2011; Chen et al. 2015). There are two major approaches.

Tachi (2011) proposed an approach based on trimming panel volumes, i.e., the

panel offset and the panel tapering as shown in fig. 1 middle and right. This

approach is universal in the sense that the original kinematics of rigid origami is

maintained. However, obtaining a completely flat-folded state is not possible as

the volume starts to block the folds.

Figure 1: Three approaches for enabling thick panel origami. Left: panels with uniform thickness
using the axis-shift approach, which folds completely flat compared to the volume trim method
by Tachi (2011) (Middle: with panel offset; and Right: with panel tapering).

The other is an approach based on the shifting rotation axis as shown in fig. 1 left.

Shifted axes change the kinematics of rigid origami from a spherical linkage to a

spatial linkage, so the method applies to limited types of vertices satisfying conditions

between thicknesses and the sector angles. Hoberman (1988) first proposed the

thickness method of rigid origami using axis-shift applied to mirror-symmetric Miura-

ori vertices. The method allows for obtaining various rigidly foldable structures with

thick panels (Hoberman 2010). Chen et al. (2015) extended the axis-shift method

to non-mirror-symmetric flat-foldable developable degree-4 vertices. Structures

created using axis-shift approach can fold to a complete flat folding of 180° without

any interference.
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The focus of existing approaches of thick rigid origami was limited to developable

origami surfaces. However, for architectural applications, the developability of the

entire surface is not necessarily required because the assembly of multiple parts

is necessary due to the available size of the panel materials. Instead, we can

explore wider variety of deployable structures from families of non-developable but

flat-foldable rigid origami. Our objective is to propose a fabrication-aware method

of thick panel construction for non-developable but flat-foldable rigid origami.

In this paper, we propose a family of flat-foldable origami composed of thick panels

by extending the axis-shift approach to a mesh composed of degree-4 vertex with

equal opposite sector angles. Such surfaces are known as discrete Voss surfaces

as their smooth version corresponds to Voss-net, i.e., conjugate geodesic net, and

are rigidly foldable as shown in Schief et al. (2008); Tachi (2010). The surfaces

are not necessarily developable but have one-degree of freedom (DOF) mechanism

that folds flat.

In our method, each panel ends up having uniform thickness, it is planar. There

is no unevenness, and the thickness is even for each panel. This is a novel

property, and the resulting structures efficiently fold up to completely flat states

with 180° fold angles, wherein the total thickness is the sum of the thicknesses of

overlapping panels. This also allows for fabrication by first cutting out each panel

and subsequently assembling them in the flat-folded state.

In sec. 2, we first review the kinematics of discrete Voss surfaces with zero

thickness, and the condition for the sector angles to make it rigidly foldable. Then,

we demonstrate methods for constructing thickness that maintains the kinematics

in sec. 3, and formulate the conditions between the sector angles and the thickness.

Based on the conditions, we explore design space in sec. 4 to show freeform

examples and symmetric shapes.

2 Discrete Voss Surfaces with Zero Thickness

Discrete Voss surfaces are the discretised version of conjugate geodesic nets, i.e.,

a quadrivalent mesh where each face is planar, and the opposite angles are equal

at each vertex (fig. 2) (Schief et al. 2008). We consider the family of discrete

Voss surfaces with corrugation, i.e., the mountain and valley creases are alternately

repeated. When the surface is corrugated in both the row and column directions,

we obtain the generalization of eggbox surfaces, often bidirectionally flat-foldable

without self-intersection (fig. 3). Similarly, when the surfaces are corrugated only

in the row direction, we obtain surfaces that are often one-way flat-foldable without

an intersection.
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Figure 2: Definition of discrete Voss surface.

Figure 3: Folding motion of a generalized eggbox surfaces.

Each vertex has four rotation axes meeting at a point and thus forms a spherical

4R mechanism of one-DOF. In general, connecting these vertices into a mesh

creates an over-constrained system and is not guaranteed to form a mechanism.

The rigid foldability of discrete Voss surfaces is proved by Schief et al. (2008).

More precisely, the existence of an intermediate folded state (a folded state not

in a plane) guarantees the existence of a mechanism (Tachi 2010), whereas the

direct construction of such a folded state often requires numerical computation

using optimization algorithms. In this study, we introduce an alternative approach

using an analytical loop condition to guarantee the folding motion of structures

parameterized only by intrinsic parameters, i.e., the sector angles of panels, instead

of directly computing the folded state embedded three-dimensionally.

Herein, we state that the kinematics of vertices with equal opposite angle whose

sector angles are α,β,α,β in counterclockwise order is equivalent to that of flat-

foldable developable degree-4 vertex with sector angles α,β,π −α,π −β as shown

in fig. 4. Specifically, the fold angle of one opposing pair in the Miura-ori is

equal to the supplementary fold angle in the discrete Voss surface. We adapt the

rigid-foldability condition of developable flat-foldable origami (Tachi and Hull 2017)
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to obtain the one for discrete Voss surfaces. By adapting Tachi and Hull (2017)

to the supplementary fold angles, for each vertex with sector angles α,β,α,β, we

obtain the fold angles provided by ρx,ρy,ρx,ρy, which are related as

tan
ρx

2
tan

ρy

2
= p(α,β), (1)

where

p(α,β) :=
1− tan α

2 tan β
2

1+tan α
2 tan β

2

. (2)

x

y

y

x

fold angle
supplementary fold  angle

Figure 4: Left: a vertex of discrete Voss surface whose sector angles are α,β,α,β. Right: a
vertex of Miura-ori whose sector angles are α,β,π − α,π − β. The set of planes used is identical
(Middle), and the supplementary angle of the discrete Voss vertex is equal to the fold angle of the
Miura-ori vertex.

In this mechanism, we always have two opposing pairs of creases of equal fold

angles, i.e., ρx or ρy, where one of them approaches 180° when the other reaches

0°, i.e., when an opposite pair of creases fold, the other pair unfolds. In general,

the kinematics has two branching modes of one-DOF mechanisms; however, we

already excluded the other mode represented by ρx,ρy,−ρx,−ρy (with different

speed coefficient) because the mode always produces self intersection.

Now, we consider a cycle around each interior quadrangle, i.e., a face not incident

to vertices on the boundary, as shown in fig. 5; they are surrounded by creases

i = 0, . . . ,3 mod 4 with fold angles ρi. For each corner formed by sector angles

αi,i+1,βi,i+1,αi,i+1,βi,i+1, the relation of fold angles is given by:

tan
ρi

2
tan

ρi+1

2
= pi,i+1, (3)

where pi,i+1 := p(αi,i+1,βi,i+1). This equation sequentially relates the fold angles

of adjacent creases around the quadrangle, which then needs to be consistent when

it cycles back. For the neighborhood of the interior quadrangle to be consistently
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rigidly foldable, it is necessary and sufficient to satisfy the following:

p01p23

p12p30
= 1. (4)

For the entire mesh to be rigidly foldable (ignoring global self-intersection), it is

necessary and sufficient to satisfy eq. (4) for each interior quadrangle.
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30

23

12

30

23
12

0

Figure 5: Sector angles and fold angles of the interior face of a discrete Voss surface.

3 Degree-4 Vertex with Uniform Thickness

3.1 Single Vertex

For thickness accommodation based on the axis-shift method, we first classify the

vertices based on the mountain-and-valley (MV) assignment of the opposing pairs

because the axis needs to lie on the valley side of the thick panels. From eq. (2), we

can observe that when α +β ∈ (0,π), p(α,β) > 0 and thus the MV-assignment for

all creases are the same; subsequently, when α +β ∈ (π,2π), p(α,β) < 0 and thus

the MV-assignment of opposite pairs are opposite. We call the former a saddle-like

vertex and the latter a convex vertex. Developable vertices with α +β =180° can

fold in both assignments, so either type can be applied as shown in sec. 3.1. The

necessary and sufficient conditions on the convex vertices and saddle vertices are

summarized below.

Convex Case

When adding thickness to convex vertices, we can add the thickness on the convex

side of the vertex to ensure that all fold lines still intersect at one point (fig. 6). In

this case, the mechanism is still a spherical 4R mechanism, and thus transformable

regardless of the thickness.

159



Y. Shimoda, T. Tachi, J. Sato

t
23

t
01

t
12t

30

Figure 6: Folding motion of a convex vertex (a vertex with positive Gaussian curvature). Top:
with zero thickness. Bottom: with uniform thickness.

Saddle-Like Case

When adding thickness to saddle-like vertices, an opposite pair of axes with mountain

creases shift inward, and the other opposite pair with valley creases shift outward.

This forms a spatial 4R linkage (fig. 7), which is not generally a mechanism;

Bennett linkage (Bennett 1903) is the only known spatial 4R linkage. Chen et al.

(2015) applied Bennett linkage to the thickness method for developable degree-4

Miura-ori vertices. We can similarly construct a Bennett linkage in our case by

carefully choosing the thickness of panels ti,i+1 (between creases i and i+ 1) that

corresponds to the length of bars in the linkage. Therefore, we obtain the following

constraints.

t01 = t23, t12 = t30. (5)

t12

t01
=

sinβ

sinα
. (6)

Developable Case

When the vertices are developable, i.e., α +β =180°, both convex and saddle-like

types can be applied, as shown in fig. 8. When the convex-type thickness is

chosen, the opposing pairs have both mountains, while when the saddle-like type

is chosen, the opposing pairs have a mountain and a valley. If the saddle-like

construction is chosen, the thickness of both panels needs to be the same because

sin(α) = sin(π − α). The folding motion of the vertex is singular: an opposing

pair stays unfolded while the other pair continuously fold. These transforming and

non-transforming pairs switch in the developed state.
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Figure 7: Folding motion of a saddle-like vertex (a vertex with negative Gaussian curvature) with
zero thickness (top) and with uniform thickness (middle), and corresponding Bennett linkage
(bottom).

3.2 Combined Geometric Conditions

We set the design parameters as the sector angles at each corner and the thicknesses

of panels. Based on the above constraint conditions, necessary and sufficient

conditions for a rigidly foldable structure with uniform panels can be obtained.

The rigid foldability (and existence) conditions for the zero-thickness discrete Voss

surfaces are as follows.

• The opposite sector angles at each vertex are equal.

• For each interior face, the sum of its sector angles is 360°.
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Figure 8: Folding motion of developable vertices with different thickness types. Top: the convex
construction allows for the folding motion with four creases with same assignment. Bottom: the
saddle-like construction allows the opposing pairs to have opposite MV-assignment.

• For each interior face, the sector angles satisfy the loop constraint given by

eq. (4).

For accommodation of thickness, we add a condition as follows.

• The sector angles and thicknesses satisfy eq. (5) and eq. (6) at each saddle-

like vertex.

When all these conditions are met, we obtain rigidly foldable discrete Voss surfaces

with thickness. The DOF of design, i.e., the number of independent parameters

we can choose can vary based on the numbers of panels and saddle-like vertices.

In some cases, we may want to restrict the thicknesses to that of commercially

available materials with standard dimensions; in this case, we expect a smaller

number of DOF of design. We investigate the DOF of design and the design

examples in the following section.

4 DOF of Design

We consider the DOF of design of the mesh with n×m quadrangle panels, which

has (n−1)(m−1) interior vertices and (n−2)(m−2) interior panels. According

to sec. 3.2, the DOF of design of the surface with zero thickness is observed by

subtracting the number of constraints from the number of sector angles of all

interior vertices, i.e.

4(n−1)(m−1)− (2(n−1)(m−1)−2(n−2)(m−2)) = 2n+2m−6. (7)
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If the number of types of thicknesses applied to panels connected to saddle-like

vertices is denoted by T and the number of saddle-like vertices is denoted by S,

then the DOF of design is 2n+2m+T −S −7. Especially, when T = 1, i.e., the

surface is composed of panels with a single type of thickness, the DOF of design is

2n+2m−S −6.

The numbers T and S can vary by the MV-assignment on the creases, i.e., how the

surface is corrugated. Here, we pick up two typical types: the eggbox type –when

the surface is corrugated in both row and column directions– and the bellows type

–when the surface is corrugated only in column direction and has same convexity

in the perpendicular direction–. The eggbox-type surface is often bidirectionally

flat-foldable without self-intersection, as shown in fig. 10. The bellows-type surface

is often one-directionally flat-foldable without intersection, as shown in fig. 12.

Here, for the simplicity of discussion, we assume that n and m are odd numbers;

therefore, the number of mountain and valley creases are equal.

4.1 Eggbox-type

In an eggbox-type surface, the number of saddle-like vertices is 1
2(n − 1)(m − 1)

(fig. 10 Top row). Moreover, the maximum number of different thicknesses that

can be applied is n+m−3 because for each saddle-like vertex, the opposing panels

must have the same thickness. The DOF of design for the structures with zero

thickness, multiple types of thicknesses, and single type of thickness is shown in

tab. 1 and fig. 10 middle row. An example design of eggbox-type structure of

3×3 panels is shown in fig. 10 bottom row. The structure folds to a completely

flat state to column (resp., row) directions, when the total thickness is the sum of

thicknesses along the columns (resp., rows).

Zero Thickness Multiple Thicknesses Single Thickness

2n+2m−6 14− (n−7)(m−7)
2 6− (n−5)(m−5)

2

Table 1: DOF of design of eggbox-type surface with n × m panels.

Figure 9: Folding motion of an eggbox-type model composed of 3×3 panels to which three types
of thicknesses are applied.
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Figure 10: Top row: the saddle vertices (marked as S) and thickness assignment in eggbox-type
surfaces composed of n × m panels with zero thickness (left), multiple thicknesses (middle), and
single thickness (right). Middle row: the tables of the DOF of design computed from tab. 1
for n,m between 3 and 15, with zero thickness (left), multiple thicknesses (middle), and single
thickness (right). Bottom row: the folding motion of an example eggbox-type surface 3×3 panels.

Figure 11: Folding motion of a freeform eggbox-type structure composed of 4 × 4 panels using 4

types of thicknesses.
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Figure 12: Top row: the saddle vertices (marked as S) and thickness assignment in bellows-type
surfaces composed of n × m panels with zero thickness (left), multiple thicknesses (middle), and
single thickness (right). Middle row: the tables of the DOF of design computed from tab. 2
for n,m between 3 and 15, with zero thickness (left), multiple thicknesses (middle), and single
thickness (right). Bottom row: the folding motion of an example bellows-type surface 3×3 panels.

4.2 Bellows-type

In a bellows-type surface, the number of saddle-like vertices is 1
2(n−1)(m−1) and

the maximum number of different thicknesses that can be applied is m−1 (fig. 12

Top row) The DOF of design of the surfaces with zero thickness, multiple types

of thicknesses, and single thickness are shown in tab. 2 and fig. 12 middle row.

An example design of a bellows-type structure of 3×3 panels is shown in fig. 12

bottom row. The structure folds to a completely flat state in the column direction

when the total thickness is the sum of thicknesses along the columns.
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Figure 13: Folding motion of a freeform bellow-type structure composed of 4 × 4 panels using 2

types of thicknesses.

Zero Thickness Multiple Thicknesses Single Thickness

2n+2m−6 9− (n−7)(m−5)
2 6− (n−5)(m−5)

2

Table 2: DOF of design of a bellows-type surface with n × m panels.

4.3 Characterization

As shown in tab. 1 and tab. 2, the DOF of design is provided by a quadratic form of

m and n. More specifically, we obtain the hyperbolic form of k − (n−n0)(m−m0)

with asymptotic lines of n = n0 and m = m0. This suggests that if n ≤ n0 (or

m ≤ m0, resp.,), we can increase m (or n, resp.,) arbitrarily while we still have design

freedom. However, when both n and m increase, the DOF becomes negative, i.e.,

the structure is over-constrained, unless the constraints are degenerate. Therefore,

for a larger n and m, it is reasonable to find the design method assuming certain

symmetry to make the constraints degenerate, as shown in the subsequent examples.

5 Design from Symmetry

5.1 Generating from Polyline

We demonstrate a design approach to create an cylindrical vault shape from a given

arbitrary section polyline. The resulting structure is composed of panels of single

type of thickness, and folds flat to its longitudinal direction.

We first consider a planar polyline P0P1P2 . . .Pn on xz-plane (fig. 14), which can

be any simple planar polyline with possible concavity or corrugation. We extend

this polyline toward the y direction to construct a vault surface that folds flat in

the y direction.
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Figure 14: One-way flat-foldable mechanism wherein mountain and valley creases are alternately
repeated only in one direction. Left: zero thickness. Right: every panel with equal thickness.

The procedure to generate is as follows.

1. Create an offset polyline P ′

0P ′

1P ′

2 . . .P ′

n by first creating the planar miter offset

of P0P1P2 . . .Pn by a constant width outward (left-side of the polyline) and

moving the offset to the y direction. Specifically, to let ω and φ denote the

width of each panel and the angle between the xz-plane and each panel,

respectively, we choose the width of planar offset equal to ω cosφ and amount

of translation in the y direction equal to ω sinφ in y. This particularly ensures

parallelness of the edges of the original and offset polyline PiPi+1 ‖ P ′

i P
′

i+1.

2. Similarly, create an offset polyline P ′′

0 P ′′

1 P ′′

2 . . .P ′′

n by first creating the planar

miter offset of P ′

0P ′

1P ′

2 . . .P ′

n by ω′ cosφ width inward (right side of the

polyline) and moving the offset by ω′ sinφ toward the y direction. In fig. 14,

we selected ω = ω′.

3. Repeat Steps 1 and 2 as required.

4. Span quad panels between adjacent polylines.
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The resulting structure is composed of degree-4 vertices where four sector angles are

the same and thus transforms from the generated state to the completely flat-folded

state, wherein everything lies on the xz-plane. Every folded state belongs to the

same family generated from the abovementioned operation with different φ and

polyline P0(φ),P1(φ), . . . ,Pn(φ), where the polyline is represented as a function

of φ. The polyline in the folded state can be computed from the isometry of

each trapezoidal panel. Let θi denote the half exterior angle of polyline at Pi(φ);

subsequently, because the length of offset polyline edge P ′

i P
′

i+1 stay constant, we

obtain ω cosφtanθ = const.. Therefore, we obtain

tanθi = secφtanθi|φ=0,

where θi|φ=0 is the half exterior angle of the polyline at Pi when completely flat-

folded. This particularly illustrates that the exterior angle of the polyline corners

increase as it unfolds and becomes 180° when in its unfolded limit, when often

the structures self-intersect. If the polyline P0P1P2 . . . is properly corrugated,

obtaining structures that completely fold in two directions (fig. 15 Right) without

self-intersection is also possible.

Figure 15: Left: One-way flat-foldable mechanism generated from a non-convex polyline wherein
mountain and valley creases are alternately repeated only in one direction. Right: Bidirectionally
flat-foldable mechanism generated from a zigzagged polyline wherein mountain and valley creases
are alternately repeated in both directions.

The overall structure can be constructed with panels of a single thickness t because

the four sector angles of every vertex are equal. Due to the shifted axes at the

saddle-like vertices, we obtain an additional shift of panels by 2tcosφ towards the

y direction at each valley corrugation. Moreover, at non-convex points on the

polyline, the offset axes creates a shift in the xz plane, as shown in fig. 14 middle

row right. The structure with thickness can be flatly folded in the y direction,

keeping every panel parallel to xz-plane, when the total thickness in y direction is

the sum of thicknesses of the overlapping panels (fig. 16).

In fig. 14, we selected ω = ω′ = ω′′ . . . as this creates a compact flat-folded state,

but we may choose a different width for each offset so that we may obtain doubly

curved surfaces as in fig. 17 with varying heights and width.
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Figure 16: Flat-foldable parabolic vault wherein mountain and valley creases are alternately
repeated only in one direction. Every panel has the same thickness.

Figure 17: Doubly curved surfaces with varying heights and widths.
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5.2 Bidirectionally Flat-Foldable Dome

Figure 18 shows a bidirectionally flat-foldable dome with 6 ×6 panels using the

mirror symmetry about two perpendicular planes (fig. 19 Right). The parameters

are computed by solving the constraints for each quadrant composed of 3×3 panels,

with constraints that the boundary must lie on the mirror planes. At each vertex on

the mirror planes, the opposite and mirrored angles should be equal, i.e., all sector

angles should be equal. Therefore, when a saddle-like vertex is on the mirror plane,

all thicknesses of the panels connected to the vertex should be equal according to

eq. (5) and eq. (6). Considering the thickness arrangement that can satisfy this

condition, two types of thicknesses can be applied, as shown in fig. 19 left. Each

quadrant has 25 sector angles of interior vertices, 8 pairs of opposite angles, 4 pairs

of sector angles at the vertices on the mirror plane, 4 interior faces, 2 saddle-like

vertices not on the mirror plane, and 2 thicknesses. Therefore, the DOF of design

is 25−8−4−4×2−2+1 = 4.

Figure 18: Generalized eggbox pattern wherein mountain and valley creases are alternately
repeated in both directions. There are two types of thicknesses applied to the panels. Thickness a:
200mm, b: 210mm
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Figure 19: Left: the arrangement of panel thicknesses and saddle-like vertices. Right: the mirror
planes of the flat-foldable dome.
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Figure 20: Folding motion of the bidirectional flat-foldable model. Thickness a: 7mm, b: 8mm
(assumed that standard dimensions of 21-mm and 24-mm thickness is used.)

6 Outlook and Future Works

Our method has an advantage for architectural fabrication. Because each panel

has a constant thickness, it can be produced by only cutting out the panels of

standard dimensions using a two-axis machine (e.g., a two-axis CNC router or a

laser cutter) (fig. 21 Top). The property that the structures folds completely flat

with stacked panels is also useful for the assembly of panels. This property holds

even when several thicknesses of panels are in use; they still are tightly stacked

without interference or gaps between them. In the assembly process, we can stack

the panels in its flat-folded state and attach hinges between the stacked panels

from the exposed sides of panels.

Such a prefabrication process does not require scaffolding and is also potentially

fully automated. We may extend our idea to interpret each thick panel to be a

non-monolithic one; for example, we may prefabricate composite panels wherein

structural elements, cladding, insulation, and facilities are already contained. Once

we obtain the flat-folded shape with every architectural component prefabricated,

we can transport it to the building site and deploy it for use (fig. 21 Middle Bottom).

After its use, the structure can be completely folded again and stored for later

reuse.

In order to materialize the proposed structures, detailed structural design of hinges

and panels during the deployment and under the static and dynamic loads after

deployment are necessary; this is one of the future works of this work. Also, the

family of surfaces are limited due to geometric constraints of discrete Voss surfaces

and the thickness conditions. We would like to explore other design families of

non-developable surfaces with thick panels in future.
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Figure 21: Top: each panel can only be cut out of standard material and therefore only be
manufactured using a two-axis CNC. Middle: easy to assemble by simply piling them up and
attaching hinges to end sections of panels. Bottom: the project will be completed by deploying it.
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