
M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

TopoGAN
Topology Optimization with Generative Adversarial Networks

Mathias Bernhard1,*, Reza Kakooee1,2, Patrick Bedarf1, Benjamin Dillenburger1

1 Digital Building Technologies DBT, Institute of Technology in Architecture ITA, ETH Zurich
* Corresponding author e-mail: mathbern@design.upenn.edu
2 School of Information Technology, Lucerne University of Applied Sciences and Arts HSLU

Abstract
Topology optimization (TO) is a numerical simulation to identify an optimal distri-
bution of solid and void. A more efficient distribution of material means a reduction
of natural resources consumption. TO results in branching structures, difficult to
manufacture with conventional methods. Advances in additive manufacturing allow
the production of components at an unforeseen level of complexity. The computa-
tional cost and the need for expert knowledge in setup prevent TO from being part
of architects’ set of instruments. Data-driven artificial intelligence (AI) improved
not only classification tasks but also spawned various synthetic models. We trained
a generative adversarial network (GAN) with the boundary conditions as input and
the result of a conventional TO as output. We chose a wall with randomly placed
openings as a case study and produced three different training sets. The GAN was
able to generate an output in a fraction of a second. The network learned to output
structures close to the ground truth and generalized even across data sets. We mea-
sured the accuracy of the generated results with different metrics. The accuracy of
the results was very encouraging within a few percents of the target value’s devia-
tion. The significant speed improvement is a first and promising indicator of how
machine learning could provide real-time feedback to the designer. Integrated into
a CAD environment, dynamic updates, even for complex tasks, are invaluable in the
conceptual design phase. Such an instrument can help the designer save material
and most efficiently layout the building structure.

Keywords: topology optimization, artificial intelligence, machine learning, genera-
tive adversarial network, structural design, computational design

208



TopoGAN

1 Introduction
The global construction industry is responsible for a large share of natural resources
consumption and a significant contributor to non-recyclable waste production and
emission of pollutants (United Nations Environment Programme 2019). Even
a relatively small reduction of used material in the constructive system has a
big impact on absolute numbers. This offers a path to more sustainable building
practice. Topology optimization (TO) is an analytical way to redistribute a specified
fraction of material to satisfy or maximize a target value (e.g., thermal conductivity
in heat sinks or maximum stiffness and minimum compliance in structural design)
under a set of boundary conditions. This is done by running multiple iterations
of finite element analysis and reassigning a new density value to each node at
each step. TO was first introduced over 30 years ago (Bendsøe and Kikuchi
1988), and a vast collection of literature grew ever since. The geometries resulting
from TO often feature intricate tubular structures and complex porosity. For
conventional manufacturing methods, these designs would have to undergo a
second round of shape optimization, e.g., to guarantee necessary draft angles for
demoulding or accessibility for a CNC mill. Advances in digital fabrication and
additive manufacturing brought these geometries within the realm of what can be
produced directly.

1.1 Topology Optimization and Architecture
Whereas TO influenced design practices in industrial, aerospace, and automotive
design significantly, only a few examples can be found for large-scale architectural
components. In this field, pioneers were Japanese architects Arata Isozaki and
Mutsuro Sasaki with their design proposals, Illa de Blanes and Santa Maria Novella,
developed in the years 1998-2003 (Januszkiewicz and Banachowicz 2017). The
designs for the iconic seaside resort in Blanes and the extension of the train station
in Florence featured large cantilevering roofs and organic columns, generated with
an evolutionary structural optimization algorithm (Ohmori 2011). Although unbuilt,
these preliminary explorations influenced the two first built examples that used TO
as the primary design method: the Akutagawa River Side project in Takatsuki from
2004 and the Qatar National Convention Centre in Doha from 2008 (Białkowski
2016).

Today the approach of using TO as a form-finding tool in the design of buildings
is practiced mainly by structural engineers during the concept phase. This was
demonstrated for the generation of graded exoskeleton patterns in high-rise struc-
tures (Stromberg et al. 2011) and the layout of structural frames for bridges and
other cantilevering structures (Beghini et al. 2014). However, advancing fabrication

209



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

technologies such as 3D printing (3DP) and construction robotics extend the do-
main of what can be feasibly manufactured and allow for more complex geometries,
which are typically featured in TO results.

Engineering consultancy Arup gave a first impression of the new design opportunities
with their advanced 3D printed steel joint, which used TO to reduce its weight by 75
percent (Galjaard et al. 2015). Shortly after that, researchers used binder jet 3DP
to create stay-in-place formwork for topologically optimized concrete slabs with
significantly reduced material and weight (Jipa et al. 2016). In another example,
3D concrete printing was used to manufacture a post-tensioned girder designed by
TO (Vantyghem et al. 2020).

Robotic fabrication enabled the assembly of advanced timber space-frame structures
that used truss optimization algorithms with combined topology and sizing opti-
mization (Søndergaard et al. 2016). Construction robotics was also instrumental for
the fabrication of complex form-work systems for the casting of topology optimized
concrete structures (Søndergaard et al. 2018).

However, TO in the design process remains in the hands of a few experts in
research or consultancies. One of the reasons for this is the high amount of required
expert knowledge needed for setting all parameters of TO simulations (Bialkowski
2018). Another reason is the high computational costs that result in time-intensive
calculations. In order to become an integrated design instrument, TO needs to
become more intuitive and real-time responsive.

1.2 Machine Learning
Enhancing the design process with forms of AI in general or machine learning
more specifically turns the computer into an active assistant that learned from
vast collections of precedents. Therefore, it can make informed predictions and
propositions based on extracted patterns - without the need for calculating a
solution from scratch and without prior knowledge. Since a massive increase of
available computing power, the availability of ever bigger training data sets and
the landslide victory of AlexNet at the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 (Krizhevsky et al. 2012), neural networks are used for
many tasks like image classification, natural language translation and drug discovery.

Google Research’s publication of DeepDream (Mordvintsev et al. 2015) awakened
the interest in creative professionals. The idea behind it is to reverse a neural
network, instead of asking what it sees in an image (classification task), it adjusts the
image to maximize seeing something specific. This has spawned the development
of many different generative AI models. A very prominent and promising type are

210



TopoGAN

generative adversarial networks or GAN for short (Goodfellow et al. 2014). GAN
models consist of two neural networks, called generator and discriminator. The
goal of the generator is to fool the discriminator by generating fake data, which are
as similar to the real data as possible. The role of the discriminator is to call the
generator’s bluff by perfectly distinguishing fake data from the real ones. An exciting
expansion of GANs is Image-to-Image translation (Isola et al. 2016). Instead of
sampling from a random noise distribution, the generator receives an input image
and learns a mapping function to translate it into an output close to the target
ground truth. Pix2pix has successfully been applied to image colourisation, season
or daytime transfer, satellite photo to map image conversion (and vice versa), or to
convert sketches of cats, shoes, and handbags into photos.

1.3 Topology Optimization and Machine Learning
These advances in AI awakened the interest of many disciplines for their promising
potential, and they also entered the field of engineering. Early attempts used
unsupervised learning to cluster the cells in the design domain for multi-material
printing (Liu et al. 2015). Looking for a more compact representation and a speeding
up of the process, Ulu et al. (2016) employ dimensionality reduction with principal
component analysis (PCA) to predict the final result of the TO from a small set
of eigenvectors. Convolutional Neural Networks (CNN), the powerful building
blocks of modern computer vision, were used to predict the final stage of TO
from the blurry intermediate stage after only 5 iterations (Sosnovik and Oseledets
2019), with a generated data set containing randomly distributed supports (priority
given to border cells) and randomly distributed vertical loads. This approach with
CNNs was even implemented in low-resolution three-dimensional space (Banga
et al. 2018). Lei et al. (2019) train a model to rearrange discrete linear elements
into an optimal topology using the moving morphable components (MMC) method.
Variational auto-encoders were used to predict an optimized topology from only
ten latent variables (Yu et al. 2019). Generative adversarial networks (GAN, see
also sec. 1.2) were trained with data varying in volume fraction, penalty, and filter
radius (Rawat and Shen 2018, 2019) and a variation thereof, conditional GANs
on variations of the classic console example (Shen and Chen 2019). We build on
these exciting prior works and extend them in three major new directions: the
application at an architectural scale, mandatory voids as a varying input parameter
for the training data, and a conversion of the data to continuous gradients through
distance transformations to facilitate more robust learning.

211



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

2 Methods
We adapt the Image-to-Image Translation model presented by Isola et al. (2016)
to our specific task. The task is to lay out a support structure around a variable
set of openings, transferring the loads as efficiently as possible according to given
boundary conditions. We train a GAN model to learn a generalized mapping
function between an input: the arrangement of openings - and an output: the
density distribution of an optimized topology.

2.1 Training Data Generation
Regardless of the application, type of data, or the algorithm at work, all machine
learning methods rely on extensive collections of training data with hundreds,
thousands, or up to millions of samples. For applications like object recognition or
image classification, these images need to be collected "in the wild" and eventually
labelled manually. The advantage of using a computational simulation is that the
training samples can be generated in arbitrary large quantities "in silicio", and their
labels are known.

The "Hello, World!" of TO is the MBB beam, a simple rectangular domain with
rolling supports in its two bottom corners and a single point load at the centre of
the top edge. More complex forms are often created for small monolithic parts
(e.g., brake pedals, brackets, or consoles) by more complicated or even dynamically
varying load and support cases. In these solutions, the regions around the mounting
fixtures are set to be mandatory solid to permit strong connections, and thereby
contributing to the global volume fraction. Despite being available in most TO
algorithms and packages, the feature to set some mandatory void regions is less
commonly in use.

2.2 Case Study
We apply TO at an architectural scale of an entire wall segment of 300x300 cm.
The three examples in fig. 1 show the dependence of the resulting structure on
the proportions of the sample wall. The boundary conditions as shown in fig. 2
(left) are constant across all examples and all data sets: a uniform linear load in
negative Z direction (pink) on all the nodes in the top row and a uniform linear
support blocking displacement in Z direction (blue) for all the nodes in the bottom
row. These constraints are specified by raster images as well and could hence also
vary and used for training the GAN.

Prior work on GANs for TO exists that varies the support and load cases as well as
parameters such as volume fraction (see sec. 1.3). Therefore, we target mandatory

212



TopoGAN

voids specifically. The variable element different in every sample is the distribution of
openings. The openings vary in position, size, shape, and rotation. Three different
data sets were generated, and the following tab. 1 summarizes the parameters used
for the generation of each data set.

Figure 1: Proportion dependence of optimal topology, three tests with the same number of
elements (FEA cells), each with a central void half the width and half the height, same linear load
and support case.

Dataset Shapes Dimensions Openings Samples

1 Rectangles position: random
width: 12-150 cm
height: 20-150 cm
rotation: 0°

1-3 1,360

2 Ellipses position: random
width: 12-150 cm
height: 20-150 cm
rotation: 0°

1-3 453

3 Lines position: random
width: 23.4 cm
length: 20-150 cm
rotation: random 0-360°

3-5 571

1 df Rectangles same as data set 1
but converted to
distance field
(see sec. 2.3)

1-3 1360

Table 1: Overview of data set specifications.

We generated all sample pictures with a Processing script at a resolution of 128x128
pixels. For the size of the wall, this corresponds to a node element size of 2.3 cm.
The TO script checks for the intensity of the red channel above a certain threshold
to set the corresponding cells to void. Hence, black pixels are the remaining cells
to work with, in which the TO algorithm optimally distributes the required amount
of material.

213



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

We use the Python implementation of Solid Isotropic Material with Penalisation
(SIMP) TO by Aage and Johansen (2013) with a custom adaptation allowing us
to read loads, supports, solid and void regions from raster images. The image
specifying the loads uses the red channel for vertical and the green channel for
horizontal loads. The blue channel is discarded at the moment and set to 128 for
all cells. The 8-bit integer value V is transformed with (V − 128)/128 to adjust
its range to [−1,1]. An orange pixel with the values (255,128,0) hence means a
straight vertical load, yellow (255,255,0) would mean a 45° load from top left. The
corresponding load colour map is shown in fig. 2, right.

Figure 2: Left: Boundary conditions for all samples in all data sets; Right: colour map for load
directions.

We batch process an entire folder of sample images and save the topology opti-
mization result as an image file. We then concatenate these sample pictures with
the TO simulation’s result into 256x128 pixel image pairs. These pairs serve as
training data for the GAN training. While the generator network only gets the right
half (B) as an input to generate output from, the discriminator network gets both
images to learn distinguishing between real (A, ground truth) and fake results.

2.3 Distance Fields
Neural Networks can be seen as general function approximation devices for any
continuous function (Csáji 2001). In the case of TO, however, due to the penal-
ization and sensitivity filtering, ultimately, the training data is almost binary or
categorical. To overcome this and make the data more suitable to learn from on
the one hand, and to have more gradual accuracy measurements for the output on
the other hand, we post-process one of the data sets before training, converting
the binary image to continuous gradients of grey levels. To this end, we first apply
two Euclidean distance transforms (van der Walt et al. 2014) to both the solid and
the void part, remap these distance maps to the range [0,0.5], invert the one of
the black part, combine them with mutually exclusive masks and add 0.5. The
combined matrix is in the range [0,1], with an iso-level of 0.5 along the boundary
between solid and void of the original image, as shown in fig. 3.

214



TopoGAN

Figure 3: creation steps of the distance field training data set; from left to right: 1: original
training sample of data set 1, 2 top row: distance map for solid part and its inversion, bottom
row: inversion of the original and distance map for the void part, 3: combination of the two maps,
4: remapped range to [0,1], final post-processed training sample.

With gradual transitions in brightness, the performance measurement described in
sec. 2.5 below will return small fractions of error if the result is off to one side by
a few pixels, as opposed to a full error if it is off by one pixel in (close to) binary
image comparisons. In the example shown in fig. 5, these fractions add up to 2. In
a binary version with a threshold of <0.5, the total error would also be 2. However,
as shown in tab. 3, we achieve approximately 46% less error in the pixel difference
category with the distance field data set.

Another advantage of the gradient transitions in the output is that by adjusting the
threshold value to e.g. 0.6 or 0.4, the volume fraction can easily be adjusted up or
down, respectively, by consistently offsetting the resulting solid part outside or inside.
Instead of calculating the linear Euclidean distances in a post-processing step, the
gradient values could stem directly from the TO algorithm, if the penalization and
sensitivity filtering per iteration would be omitted.

2.4 Machine Learning Model
The training data consists of image pairs made of the input image (arrangement of
openings) on the right and the ground truth (the result of the topology optimization)
on the left, as shown in fig. 4. We run the training on a Windows 10 (64 bit)
machine with 64 GB RAM, an AMD RyzenTM ThreadripperTM 2920X Processor
and a NVIDIA GeForce RTX 2080 Ti graphics processing unit. An overview of time
measurements for training and prediction is shown in tab. 2.

We train the generator and discriminator networks on all four data sets (see tab. 1)
separately and on a collection of sets 1-3 combined. We run the training for 50
and 100 epochs. To verify how well the generator network learned to perform the
mapping task, we retain 10% of the data for testing purposes. The discriminator
network can be discarded after the successful training, and only the generator
network is used to synthesize the output. The generator has not seen the test

215



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

Dataset Training (100 epochs) Prediction (ø/image) Test Images

1 200 min 0.11 sec 136
2 70 min 0.14 sec 46
3 85 min 0.13 sec 57
1 df 200 min 0.15 sec 136

Table 2: Timings for training and predictions.

Figure 4: twelve samples of the training data, four of each data set; left: result of the topology
optimization (ground truth), right: arrangement of openings, input for the generator.

inputs before during training. We run these tests for the four data sets separately,
so the generator trained on the training samples of data set 1 is given the remaining
test images of data set 1. Once the more time-consuming task of training the
network is accomplished, we can easily test how well the model learned to generalize
by running tests across different data sets. We do so by presenting the test images
of one data set to a generator trained on another data set, as shown in tab. 3.

The bigger the collection of training data, the better most machine learning
models learn their task, learn to generalize without overfitting. A common strategy
to artificially expand the available samples is called data augmentation. While
frequently applied transformations such as scaling and rotation are not applicable
in our case due to the boundary constraints, we benefit from the fact that the TO

216



TopoGAN

outputs are invariant to horizontal reflection. By randomly applying mirroring along
the central vertical axis to the images prior to feeding them to the networks during
training, we artificially double the number of samples (see tab. 1).

2.5 Performance Measurement
The only inputs for the two networks in the GAN are the 16’384 pixels’ colour
values of the training images. No semantic meaning whatsoever is taken into
account during training. Examples for semantic meaning are that black means
solid and white means void in the ground truth, that red pixels in the opening map
must remain white, that 30% of the pixels should be darker than medium grey,
that neighbouring pixels simulate physical connections to transfer loads or even
the existence of a load and support condition at all. Likewise, the output of the
generator network is also just an image with 16’384 colour values.

Visual Inspection
The most obvious and intuitive way to verify the result may be by visual inspection.
The overview in fig. 8 (see Appendix) shows how well the generator performs for
most "regular" cases of branching trees. The most common error occurs with
thin horizontal connections as they are occasionally misplaced, discontinuous, or
missing altogether. More extreme cases like the one in the second column, third to
last row, also seem to pose a problem, most likely because this type of structure
is underrepresented in the training data. However, to gauge the capacity of the
generator, precise numerical analyses are needed. Therefore, we implement four
different measurement strategies to quantify the performance of the generated
solution in comparison with the ground truth. They all measure a different type
of similarity in different feature spaces. Most of them are based on numerical
calculation and reveal differences not perceptible at first sight.

Pixel Difference
The brightness of the pixels in the TO algorithm’s output represents material density
values. Black means high density (solid), and white means low density (void). In
the SIMP method used for this study, these values are not strictly binary (like in the
BESO method) but instead are enforced through the penalization to tend towards
one of the extreme ends of the spectrum, maintaining the target volume fraction
constant. For every pixel, or cell in FEA terms, where the density (or brightness)
of the generated result differs from the ground truth, it can be regarded as an error
and the absolute difference its magnitude.

217



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

The computation of the pixel difference as an accuracy measurement involves two
steps:

1. calculate a new matrix where each cell is the result of A−B, where A is the
ground truth image, and B is the output of the generator network

2. sum the absolute values of all the cells in the new matrix
The first step is illustrated in fig. 5. A negative value means the generator did
not put enough material in a cell, while a positive value means it added too much.
The second step would sum all the absolute values of the third row; hence this toy
example would have a PD value of 2.

Figure 5: calculation method for pixel differences.

The matrices generated in step 1 can also be rendered as an image for visual
inspection of where any differences exist. The overview in fig. 6 shows 28 examples
of these matrices, with a colour map ranging from dark red (-1) over light grey
(0) to dark blue (+1). Many red parts show that the generator sometimes fails to
add thin horizontal or diagonal connections between principle vertical structures,
or sometimes adds them at a different height shown in blue. Many blue parts are
alongside the primary vertical structures. If these are blue on one and red on the
other side, the generator slightly shifted the structure to either side. Blue on both
sides means it generated the structure too thick overall.

Constraint Violation
One constraint enforced by the TO algorithm is that red cells in the input are
mandatory to remain void (or density 0) in the FEA model. This is hard-coded and
reset after every iteration of the FEA analysis. Like the volume fraction described
above, this information is not explicitly available to the GAN machine learning
model. Whether or not it succeeds in recognizing this pattern – an extracted rule
to be applied by the generator – is a useful performance measurement for successful
training.

The last column in tab. 3 shows that this is a less significant performance mea-
surement as only very few generated samples violate the void constraint at all or
by very few pixels only. The tests performed across data sets - even though half of
them got a maximum of 1 pixel wrong - show some outliers with higher numbers
(trained on data set 2 and 3 and tested with data set 1). The 610 pixels correspond
to a 3.7% error, which is still reasonably small.

218



TopoGAN

Figure 6: Pixel differences for 28 examples.

Volume Fraction
For the generation of the TO ground truth training data, we specified as a parameter
a volume fraction of 30%. This means that all cells in the FEA model are set to an
initial density value of 0.3. During the following optimization iterations, this virtual
material is continuously redistributed to maximize stiffness or minimize compliance.
In the end, most cells have a density of either 1 (solid, black) or 0 (void, white),
but the total density sum remains constant. While the volume fraction constraint
is numerically enforced after every iteration of the TO algorithm, this number is
not available to neither the generator nor the discriminator network in the machine
learning model. However, for the generator network to usefully and accurately
complete the task, its output should also provide a solution using the same amount
of material.

We measure the volume fraction in both the ground truth and the generated results
by counting the number of pixels below 0.5 brightness level threshold and dividing
it by the total number of pixels (128x128). As shown in tab. 3, columns four and
five, the mean volume fraction in almost all the cases is within ±1% of the target
value, the predictions of the generator just have a slightly higher standard deviation.
Without being explicitly told, and without counting the black and white pixels in
any layer of the machine learning model, it successfully learned this general rule
and accurately applied it to generate the outputs.

219



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

Cosine Similarity of Network Weights
We feed the trained discriminator with a target image and the corresponding gene-
rated image to compute the cosine similarity values. We get the outputs of the last
convolution layer of the discriminator. The shape of this output is [1,32,32,512].
We convert this tensor to a vector, so each result vector represents a point in
524,288 (32x32x512) dimensional space. We then compute the cosine similarity
between the vector of the target image and the one of the corresponding generated
image.

Compliance
The training data produced by the TO algorithm is optimized for minimal compliance
and maximum stiffness. The 30% volume is distributed in a way to best respond
to the specified load and support boundary conditions (see fig. 2). The quality of
this response can be expressed as a number as well. As described in the previous
sections, only differences based on the images have been measured for comparison
so far. A relevant indicator for quantifying the success of the generator will be the
structural performance of the generated structure compared to the ground truth.
Hence, the next step will be to convert both images back to a FEA model with
the density of the cells depending on the brightness of the pixels and calculate the
compliance.

3 Results
We achieved promising results in both speed and accuracy according to the perfor-
mance measurements presented in the previous sec. 2.5. They make TopoGAN an
attractive candidate for future investigations.

3.1 Speed
For the production of the training data, we ran 50 epochs of TO per sample input,
which took an average of ±60 s per sample. The training of the GAN machine
learning model is relatively time-consuming, depending on the number of samples
(see tab. 2). However, once the generator network is trained, it can predict an
output image in only tenths of a second. This corresponds to a factor 500 speed
improvement. A single solution obviously does not justify the 200 min of GAN
model training time. However, a frame rate of 8 fps converts an AI-assisted TO into
a real-time computational design instrument. The designer can get live feedback
upon every update of the design, where minor translations of openings can cause
fundamental changes in the topology of the supporting structure. The 200 min of
training time would be justified after only 25 s of interactive work.

220



TopoGAN

3.2 Accuracy
The following tab. 3 summarizes the results of the different performance measure-
ments described in sec. 2.5. There are three major findings worth mentioning.
The first is that the volume fraction for the predicted output is very close to the
targeted 30%, with only a slightly higher standard deviation than the ground truth.
The second is that constraint violations are 0 or close to 0 in all data sets for
the corresponding test samples or when trained on data set 1. Because data set
1 contains the highest number of samples, it suggests that the other generator
networks would also learn to generalize better with more training data. Finally,
the third finding is the excellent performance of the distance field data set in the
pixel difference category. The difference is 42% better than the average of data
sets 1, 2 and 3, 36% better than data set 1 with the same number of samples.
This post-processing step of converting the training data to continuous gradients
described in sec. 2.3 is beneficial for the GAN model to learn the mapping robustly.

Train Test PD VF (GT) VF (PR) CV

1 1 1517 / 651 29.95 / 0.60 29.91 / 1.82 0.07 / 7
2 2 2747 / 1012 30.27 / 0.31 30.46 / 1.63 0.00 / 0
3 3 2703 / 780 30.26 / 0.23 30.67 / 1.59 0.00 / 0
1 df 1 df 972 / 393 29.98 / 0.60 30.42 / 1.86 8.96 / 144
1+2+3 1 1428 / 704 29.98 / 0.60 29.41 / 1.62 0.03 / 4
1 2 2546 / 940 ... 30.22 / 1.34 0.02 / 1
1 3 3176 / 965 ... 30.18 / 1.37 0.05 / 1
2 1 2364 / 917 ... 30.34 / 2.34 4.18 / 287
2 3 3084 / 729 ... 29.34 / 1.76 0.00 / 0
3 1 2639 / 946 ... 29.86 / 2.60 24.03 / 610
3 2 3110 / 830 ... 31.16 / 2.26 1.15 / 49

Table 3: Performed train and test combinations with the corresponding results; PD: pixel
difference (µ/σ), VF: volume fraction (µ/σ), GT: ground truth, PR: prediction, CV: constraint
violation(µ/max), µ: mean value, σ: standard deviation, max: maximum value.

4 Conclusion
We have shown how a machine learning model (GAN) can be trained on an extensive
collection of precedent solutions to topology optimization problems. The generator
network learns well to satisfy constraints such as the mandatory void regions and
to satisfy a volume fraction within a small range of error without being explicitly
told. The model learns the task well enough to generalize across data sets. The
accuracy described in the results sec. 3 made us very confident to investigate

221



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

the presented methods further. The massive speed improvement outperforms the
slightly lower accuracy trade-off when compared to conventional TO algorithms. In
early design phases of conceptual decisions, the more qualitative assessment of our
instrument could be preferred over time-consuming simulations, for its agility and
immediate response. By no means, we suggest replacing a quantitatively correct
final structural analysis.

The 200 minutes of training do not pay compared to 1 minute of TO (50 epochs)
for a single task. However, integrating an AI-assisted TO with a frame rate of 8
fps into a computational design instrument is a categorical game-changer. TO
is no longer a computationally expensive method dictating a solution for given
constraints that one has to obey. Instead, the architect can challenge the spatial
layout of the structure and indirectly design it in an interactive process. The GAN
model learns a type of intuition from a sufficient number of precedent cases, not
100% correct all the time but the gist of it, good enough to not always start from
scratch as if no solution was ever computed before.

In its current state, our project presented in this paper has a clear focus. It
targets the particular case of 2D wall elements with openings varying in shape and
position, while dimension, resolution, and boundary constraints remain constant.
We consciously set these constraints to investigate the viability of GANs for TO
tasks. For TopoGAN to become a meaningful and more general-purpose design
instrument, we need to increase two of the four V’s of big data: volume and
variety. As our training data is synthesized (see sec. 2.1), the volume can easily
be increased. As the boundary constraints are specified through raster images as
well, a GAN model could potentially also learn to interpret and correctly map these
pixels’ colours. An expansion of our method to the third dimension is possible with
minor adaptations, but out of scope at the moment for reasons of resolution or
computation time in data generation, respectively.

Instead of using machine learning to predict the final state from only the first 5-10
iterations of TO, as described in some prior works (see sec. 1.3), the output of
the generator could be used to initialize the cells’ density values in the FEA model.
The TO algorithm would then only be used to calculate the last 5-10 iterations.

References
Aage, N. and V. E. Johansen (2013). Topology optimization codes writ-
ten in python. http://www.topopt.mek.dtu.dk/Apps-and-software/
Topology-optimization-codes-written-in-Python.

222

http://www.topopt.mek.dtu.dk/Apps-and-software/Topology-optimization-codes-written-in-Python
http://www.topopt.mek.dtu.dk/Apps-and-software/Topology-optimization-codes-written-in-Python


TopoGAN

Banga, S., H. Gehani, S. Bhilare, S. Patel, and L. Kara (2018). 3D Topology
Optimization using Convolutional Neural Networks.

Beghini, L. L., A. Beghini, N. Katz, W. F. Baker, and G. H. Paulino (2014).
Connecting architecture and engineering through structural topology optimization.
Engineering Structures 59, 716–726.

Bendsøe, M. P. and N. Kikuchi (1988). Generating Optimal Topologies in Struc-
tural Design Using a Homogenisation Method. Computer Methods in Applied
Mechanics and Engineering 71(2), 197–224.

Białkowski, S. (2016). Structural Optimisation Methods as a New Toolset for
Architects. In Proceedings of the 34th Education and research in Computer
Aided Architectural Design in Europe Conference, Volume 2, pp. 255–264.

Bialkowski, S. (2018). Topology Optimisation Influence on Architectural Design
Process-Enhancing Form Finding Routine by tOpos Toolset utilisation. Computing
for a better tomorrow - Proceedings of the 36th eCAADe Conference 1, 139–148.

Csáji, B. C. (2001). Approximation with artificial neural networks. Faculty of
Sciences, Eötvös Loránd University, Hungary.

Galjaard, S., S. Hofman, N. Perry, and S. Ren (2015). Optimizing Structural
Building Elements in Metal by using Additive Manufacturing. In International
Association for Shell and Spatial Structures, Number August.

Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio (2014). Generative Adversarial Networks.

Isola, P., J.-Y. Zhu, T. Zhou, A. A. Efros, B. Ai, and U. C. Berkeley (2016,
nov). Image-to-Image Translation with Conditional Adversarial Networks. arxiv ,
802–806.

Januszkiewicz, K. and M. Banachowicz (2017). Nonlinear Shaping Architecture
Designed with Using Evolutionary Structural Optimization Tools. IOP Conference
Series: Materials Science and Engineering 245(8).

Jipa, A., M. Bernhard, M. Meibodi, and B. Dillenburger (2016). 3D-Printed
Stay-in-Place Formwork for Topologically Optimized Concrete Slabs. 2016 TxA
Emerging Design + Technology (Figure 2), 96–107.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems

223



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

25, pp. 1097–1105. Curran Associates, Inc.

Lei, X., C. Liu, Z. Du, W. Zhang, and X. Guo (2019). Machine learning-driven real-
time topology optimization under moving morphable component-based framework.
Journal of Applied Mechanics, Transactions ASME 86(1).

Liu, K., A. Tovar, E. Nutwell, and D. Detwiler (2015, 08). Towards Nonlinear
Multimaterial Topology Optimization Using Unsupervised Machine Learning
and Metamodel-Based Optimization. Volume 2B: 41st Design Automation
Conference. V02BT03A004.

Mordvintsev, A., C. Olah, and M. Tyka (2015). Deepdream - a code example for
visualizing neural networks.

Ohmori, H. (2011). Computational morphogenesis: Its current state and possibility
for the future. International Journal of Space Structures 26(3), 269–276.

Rawat, S. and H. Shen (2018). A Novel Topology Design Approach Using an
Integrated Deep Learning Network Architecture. pp. 1–15.

Rawat, S. and M. H. H. Shen (2019). A Novel Topology Optimization Approach
using Conditional Deep Learning.

Shen, M. H. H. and L. Chen (2019). A New CGAN Technique for Constrained
Topology Design Optimization. pp. 1–14.

Søndergaard, A., O. Amir, P. Eversmann, L. Piskorec, F. Stan, F. Gramazio, and
M. Kohler (2016). Topology Optimization and Robotic Fabrication of Advanced
Timber Space-Frame Structures. Robotic Fabrication in Architecture, Art and
Design 2016 , 191–203.

Søndergaard, A., J. Feringa, F. Stan, and D. Maier (2018). Robotic abrasive wire
cutting of polymerized styrene formwork systems for cost-effective realization of
topology-optimized concrete structures. Construction Robotics 2(1-4), 81–92.

Sosnovik, I. and I. Oseledets (2019). Neural networks for topology optimization.
Russian Journal of Numerical Analysis and Mathematical Modelling 34(4), 215–
223.

Stromberg, L. L., A. Beghini, W. F. Baker, and G. H. Paulino (2011). Application
of layout and topology optimization using pattern gradation for the conceptual
design of buildings. Structural and Multidisciplinary Optimization 43(2), 165–180.

Ulu, E., R. Zhang, and L. B. Kara (2016). A data-driven investigation and estimation
of optimal topologies under variable loading configurations. Computer Methods

224



TopoGAN

in Biomechanics and Biomedical Engineering: Imaging and Visualization 4(2),
61–72.

United Nations Environment Programme (2019). Sustainable buildings. https:
//www.unenvironment.org/explore-topics/resource-efficiency/
what-we-do/cities/sustainable-buildings.

van der Walt, S., J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner,
N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors (2014, 6).
scikit-image: image processing in Python. PeerJ 2, e453.

Vantyghem, G., W. De Corte, E. Shakour, and O. Amir (2020). 3D printing of a
post-tensioned concrete girder designed by topology optimization. Automation
in Construction 112(January), 103084.

Yu, Y., T. Hur, J. Jung, and I. G. Jang (2019). Deep learning for determining a near-
optimal topological design without any iteration. Structural and Multidisciplinary
Optimization 59(3), 787–799.

225

https://www.unenvironment.org/explore-topics/resource-efficiency/what-we-do/cities/sustainable-buildings
https://www.unenvironment.org/explore-topics/resource-efficiency/what-we-do/cities/sustainable-buildings
https://www.unenvironment.org/explore-topics/resource-efficiency/what-we-do/cities/sustainable-buildings


M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

Appendix

Figure 7: Collection of 204 training samples (ground truth).

226



TopoGAN

Figure 8: Collection of 72 results of the GAN, data set 1; image triples: input, ground truth,
output.

227



M. Bernhard, R. Kakooee, P. Bedarf, B. Dillenburger

Figure 9: Collection of 44 results of the GAN, data set 2; image triples: input, ground truth,
output.

228



TopoGAN

Figure 10: Collection of 56 results of the GAN, data set 3; image triples: input, ground truth,
output.

229


	TopoGAN
	Introduction
	Topology Optimization and Architecture
	Machine Learning
	Topology Optimization and Machine Learning

	Methods
	Training Data Generation
	Case Study
	Distance Fields
	Machine Learning Model
	Performance Measurement

	Results
	Speed
	Accuracy

	Conclusion


