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Abstract
This paper describes the geometric and computational basis for creating double-
curved space frame configurations from the Spin-Valence deployable kirigami con-
struction system. The goal was to produce space frames that match non-flat target
surfaces to be cut from flat parts and deployed into form.

The Spin-Valence system can be geometrically described as two offset surfaces cre-
ated from tiled units—the primary surface, which can be seen as the original flat sheet
of material, and the secondary surface, which emerges from the primary through
spin-folds and reconnections between neighbouring unit hubs. The surfaces are off-
set from each other and connected through triangulating legs inherent in the cut
patterns, thus producing a rigid structural configuration.

The construction must take into account the curvature and non-trivial depth of the
space frame, as well as the geometric deployment constraints of Spin-Valence units.
The frame is created in two stages. From an arbitrary curved target surface, a planar
and conical quad mesh is produced, giving the proposed configuration for the more
constrained secondary surface. Each unique unit has a specific deployment space,
which is applied to the secondary surface tiles in order to compute a primary surface
configuration and inherent triangulating legs, completing the space frame geometry.

Keywords: Space Frame, Kirigami, Origami, Structure, Digital Fabrication, Com-
putational Design, Deployable Structure, Discrete Differential Geometry, Python,
Kangaroo
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1 Introduction
The Spin-Valence kirigami space frame system is, at its core, exceedingly simple.
Roughly L-shaped cuts are arrayed around the edges of a polygon to create the
geometry of a unit (fig. 1). This geometry, when cut into a sheet of material,
allows a spin-fold which extends a central hub out of the original sheet of material,
similar to the RES system defined by Miyamoto (2014), and seen in fig. 2. Unlike
RES, Spin-Valence relies on points of reduced cross-sectional area that act like
pinned connections, rather than multiple folds to create hinges at each end of unit
legs. Neighbouring units are placed onto a sheet of material such that their hubs
can touch each other once deployed, as seen in fig. 3.

BASE GEOMETRY
POLYGON

L-SHAPED CUT LINE COPIED ONTO 
EACH SIDE

UNIT PLACED 
ONTO SHEET

CENTRAL “HUB” 
DEFINED

L-SHAPE MODIFIED 
TO CREATE PIVOTS 

AT LEG ENDS

Figure 1: Spin-Valence unit geometry (abstracted pattern on first three columns and actual cut
pattern on second three columns).

HEIGHT

ROTATION ANGLE ROTATION ANGLE

Figure 2: Spin-Valence unit deployment shown as simplified square tile and actual rounded cut
pattern designed for steel in (a) axon view and (b) plan view.

This group of connected hubs generates a new surface offset some distance from the
original surface and interconnected through triangulating legs, which are inherent in
the pattern. The specific relationship between hubs resists their ability to fold back
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into the original sheet. The original sheet is referred to as the primary surface, and
the connected hubs create the offset secondary surface, as described in Baker (2018)
and shown in fig. 3. Initially designed in cut and folded paper, then explored more
broadly in digitally-cut steel, the system aims at quickly deployed structural space
frames that, rather than being formed of many parts with complex connections,
are made of a single part reconnected to itself. Both the overall form of the space
frame and individual connections are encoded in the cut patterns.

a)

b)

c)
PRIMARY SURFACE 

SECONDARY SURFACE 

INITIAL SQUARE TILING PRIMARY SURFACE TILING SECONDARY SURFACE TILING COMBINED TILING

FLAT UNIT TILING MID-DEPLOYMENT FULLY DEPLOYED/CONNECTED COLOR DIFFERENTIATED 
SURFACES

FLAT UNIT TILING MID-DEPLOYMENT FULL DEPLOYMENT WITH COLOR 
DIFFERENTIATED SURFACES

Figure 3: Aggregation of Spin-Valence units, (a) plan view showing base tiling and primary and
secondary surface tiling, (b) axon view of unit deployment from a flat sheet into a space frame
configuration, (c) section view showing the depth of space frame based on offset of primary and
secondary surfaces.

The system was developed through iterative making, where useful relationships
were discovered in the physical design space, and the specific cut line geometry
of the system was refined for increased strength and constructibility. This is
significant, because, as detailed in Baker (2014), the argument is made that the
system would never have been conceived if it began with computational design,
despite its seeming simplicity. Because of the difficulty of modelling 3D linkages
with multiple degrees of freedom like those that occur within each unit in the
system, there is greater barrier to creating this system in a computational space
than to physically making it. However, it is a system that once developed, tuned
to the specifics of fabrication method and material, is then more meaningfully
translated into a computationally controllable model. While initially it may appear
that making a double-curved version of Spin-Valence would only entail arraying
individual units over a curved surface, the real problem is much more complex. For
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example, the system is superficially very similar in appearance to the tensegrity
aggregations shown in Charalambides and Liapi (2005), as they both show double
layers of quadrilateral tiling connected by straight legs. However, these systems
have very different geometric constraints and obvious differences in structural
behaviour. Spin-Valence must: 1) deal with creating double-curved surfaces from
flat tessellations, 2) recognize the precise configuration space of the deployment of
a single unit, and 3) maintain specific geometric relationships between neighbouring
units, while also ensuring that 3D geometry can be nested back into workable 2D
cut files for fabrication. The tensegrity systems must deal with the first of these,
but they are not constrained by the latter two.

Previously, the Spin-Valence system has been tested as a structural system in Sahuc
et al. (2019), though the structural ramifications of curving or bending the system
have not yet been explored. A team was assembled to create a pavilion using
a double-curved Spin-Valence space frame concept in order to explore both the
computational and structural ramifications of this design. This paper will detail
the approach to the geometric and computational problem of producing this initial
design, show the first physical prototype, and describe future work.

2 Geometric challenge
The Spin-Valence system described above with two offset surfaces of square tiling is
shown in flat Euclidean geometry. Adapting it to non-flat target surfaces introduces
two problems. The first comes from any change in the shape of the target surface,
and the second from the relationship between the two surfaces, which can also be
considered as adding depth to the target surface.

The first challenge is described mathematically by Gaussian curvature, which defines
the geometry of a surface from the point of view of observers on the surface. A
flat sheet can only be bent in one direction and then becomes rigid in the other.
Surfaces with non-zero Gaussian curvature are therefore often described as “double
curved.” (Sullivan 2008; Harriss 2020). From the point of view of the surface, this
curvature can only be achieved by a deformation of the shapes involved, giving
different lengths and angles to the flat case (as seen in Liapi et al. 2017). This
changes the way individual units in the Spin Valence system can connect together.
Creating double-curved geometry, such as the target surfaces in fig. 4, at an
architectural scale can be accomplished in many ways, such as faceting a surface
out of planar parts, as in a soccer ball, using curving seams, such as in clothing
patterns, or strategically cutting the surface so that it may be expanded, as in
auxetic surfaces. In this case we have chosen a method of creating strips of units
that can be cut from flat sheets and assembled to produce double-curved surfaces
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— a similar method to that described by Kilian (2003).

Figure 4: Target surfaces: (a) flat, (b) vault (Gaussian curvature 0), (c) double-curved (Gaussian
curvature non-0), and (d) target surface for pavilion design (Gaussian curvature non-0).

The Spin-Valence configuration described in the above figures, with tiled units of
equal size and rotation arrayed uniformly on a flat surface, can only be assembled
into a flat space frame. Pulling identical units farther apart from each other on the
primary surface in one direction can produce single-curved or vaulting space frames
that maintain zero Gaussian curvature. The move to double-curved forms could be
conceived as distorting the regular tiling pattern, necessitating that each unit be
unique.

The second challenge comes from the offset of the primary and secondary surfaces.
The geometric properties described above work on mathematical surfaces and so
do not consider the material thickness, which adds a distinct geometric challenge
discussed, for example in the thin shells (surfaces with non-zero thickness small in
comparison to the other dimensions of the structure (Grinspun et al. 2003). For
a space frame this creates two notions of material thickness, the thickness of the
material used in manufacturing of elements and the thickness, or depth, of the
frame structure itself. Both have importance for the structural properties of the
resulting frame, but the depth given by the separation of the two surfaces must
here be taken into account in computationally deriving the geometry of the space
frame. In the completely flat case, all units must be deployed from the primary
surface in the same direction, though the system may be deployed to either side
of the original sheet. In other words, the units are deployed in the direction of
the surface normal, which is constant for the flat case. For a curved surface the
surface normal will shift around, creating differences in how individual units must
be deployed in order to connect on the secondary surface. Beyond this direction the
units will all deploy in the same way, so changing coordinates so that the surface
normal is vertical allows for a detailed consideration of the configuration space in
sec. 3.2.

What this geometric picture conceals, however, is the ability to vary the size and
shape of individual units. For curved surfaces, therefore what is required is a system
that allows for the changes in geometry within the surfaces and between surfaces.
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Figure 5: Computational strategy sequence: (a) target surface, (b) secondary surface optimization,
(c) primary surface deployed off of secondary surface, and (d) complete space frame configuration.

3 Solution in two parts
Our approach to the problem described above, was to solve each of the two problems
separately. We first created a suitable tiling for the unit hubs of the secondary
surface, dealing with the problem of Gaussian curvature, and then used it to find
an optimal primary surface, working backward to compute the primary surface from
the secondary, as described in the set of diagrams in fig. 5, from an early iteration
of this approach. This approach is mapped out in the flowchart in fig. 6.

3.1 Creating a double-curved secondary surface
The problem of creating a collection of flat quadrilateral units close to some given
surface, is perhaps the more technical of the two challenges. It is also a classical
problem from both CAD and CGI where meshes made of mostly flat quadrilaterals
(quad mesh) are preferable to meshes made solely from triangles (for example
Pottmann et al. 2007; Crane et al. 2013).
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PART 1
Secondary Surface 
Tiling
(see Section 3.1)

PART 2
Primary Surface 
Tiling
(see Section 3.2)

design arbitrary target surface
(see Figure 4d)

make quadrilateral tiling to define
secondary surface

(see Figure 7)

secondary surface geometry applies unit 
configuration space (see Figures 8 and 9) to each 

tile to create initial primary surface tiling

loop to optimize deployment relationship between 
neighboring units across the entire structure, 
which refines primary surface (see Figure 13)

loop to improve tiling until it reaches a workable
secondary surface: a planar conical tiling

with tiles close to squares
(see Figure 7)

convert each tile into rhombus
(for mathematical simplification)

Figure 6: Flowchart describing the process of computing space frame geometry for a given target
surface.

Our first requirement was to produce a quad mesh with each face planar and
roughly square. This mesh can be considered as a tiling of the surface, producing a
proposed secondary surface by twisting each unit in its plane, as described above
for the flat Spin-Valence system. To ensure that the resulting pieces would still
meet up, additional constraints were placed on the vertices. These constraints are
equivalent to the mesh being conical and every face at a vertex being tangent to
the same cone, as in Pottmann and Wallner (2008).

The conical mesh has the additional property that the curves on the surface following
the edges of the mesh will be “torsion free”. In other words, they will not twist
around the edge as they move along it. This ensures that the relationship between
the primary and secondary surface will be one of purely bending the sheet, without
twisting it. This property is useful in many applications. For example, Schling et al.
(2018) use similar methods to avoid twisting in a different frame structure.
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This method was implemented by numerical optimization using Kangaroo in
Grasshopper (Robert McNeel & Associates 2019). The points of the mesh were
constrained to stay close to the target surface, and mesh boundary points were
further constrained to stay on the boundary curve of the target surface. The
individual quads were optimized for planarity and the vertices were optimized to
be conical. In addition, bending along edges was discouraged, and for every face
the four edges were kept to nearly equal lengths. The initial grid and the resulting
optimized grid are shown in fig. 7.

Figure 7: Initial grid on surface and optimised candidate for the secondary surface, showing the
underlying grid and the secondary surface hubs.

3.2 Creating the primary surface
Finding the optimal positions for the primary surface units based on the previously
described optimized tiling configuration at the secondary surface is resolved through
first solving the geometry of a single unit, and then performing optimization to
minimize distances between deployed primary surface tiles.

Solving the geometry of Spin-Valence
The first step was to create a geometric model of a quadrilateral Spin-Valence unit.
The two faces are related by a screw motion, but not all such motions satisfy the
constraints given by the lengths of the legs. Solving for the constraints gives a
parametrization of the configuration space for a single unit.

For this, the leg thickness (seen in fig. 11) was ignored, making the faces for the
primary and secondary surface the same size. The two surfaces are joined by linear
legs with length equal to adjacent sides as shown in fig. 8. This geometric model
follows the constrains of the kirigami system by holding leg lengths and surface sizes
constant and only varying their positions relative to each other, as a mechanical
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linkage. There is one configuration where primary and secondary surfaces fall in the
same position — the flat or undeployed position. All other possible configurations
that would be produced physically by deploying the Spin-Valence unit can be found
as a two-parameter configuration space, derived below, using the relationships
between the inscribed kirigami constraints and the isometry from the primary to
secondary surface tile.

r1

s1
s4

s3
s2

r2

r3

r4

Figure 8: Primary and secondary surface notation.

The initial inputs for the algorithm are the coordinates of the primary surface,
denoted as: r1, r2, r3, and r4 and the isometry R, that represents the deployment of
the unit from the primary surface to its position in the secondary surface. Figure 8
illustrates the model. The corners of the deployed unit are therefore, si = R[ri].
We will later make an assumption that the primary surface forms a rhombus to
obtain the following parametrization:

Theorem. Every rotation around an axis perpendicular to the diagonal of a rhombic
spin-valence unit determines a unique deployment for that unit.

The proof and explicit parametrization are given below.

The kirigami constraints on this system are the lengths of the four legs; for example,
l1 is the length from r2 to s1. This is fixed by eq. (1) and (2) which state that
the edge lengths of the units and the distance between the primary surface corner
(r2) and the deploying secondary surface corner (s1) all keep the same length.
Symmetric equations constrain the lengths of the other three legs.

(r1− r2).(r1− r2) = (s1−s2).(s1−s2) = l1 (1)

(s1− r2).(s1− r2) = l1 (2)

Returning the transformation to eq. (2) gives

(s1− r2).(s1− r2) = (R[r1]− r2).(R[r1]− r2) =
R[r1].R[r1]−2R[r1].r2 + r2.r2 = l1

(3)
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Plugging (eq. (1)) into (eq. (3)) gives:

R[r1].R[r1]−2R[r1].r2 + r2.r2 = (r1− r2).(r1− r2)
R[r1].R[r1]−2R[r1].r2 + r2.r2 = r1.r1−2(r2.r1)+ r2.r2

R[r1].R[r1]−2R[r1].r2 = r1.r1−2(r2.r1)
(4)

In a similar manner each leg gives a distinct constraint:

Leg 1 :R[r1].R[r1]−2R[r1].r2 = r1.r1−2(r2.r1)
Leg 2 :R[r2].R[r2]−2R[r2].r3 = r2.r2−2(r3.r2)
Leg 3 :R[r3].R[r3]−2R[r3].r4 = r3.r3−2(r4.r3)
Leg 4 :R[r4].R[r4]−2R[r4].r1 = r4.r4−2(r1.r4)

(5)

These equations are significantly simplified by the further assumption that the unit
shape is a rhombus, and that its centroid is at the origin. This makes r3 =−r1,
r4 =−r2, and r1.r2 = 0. The constraints from (eq. (5)) thus become:

Leg 1 :R[r1].R[r1]−2R[r1].r2 = r1.r1

Leg 2 :R[r2].R[r2]+2R[r2].r1 = r2.r2

Leg 3 :R[−r1].R[−r1]+2R[−r1].r2 = r1.r1

Leg 4 :R[−r2].R[−r2]−2R[−r2].r1 = r2.r2

(6)

Now, as R[x] is an isometry, it can be replaced with the function, R.x+P , where
P is the vector between the centroids of the primary and secondary surfaces and R
is a rotation matrix. This is illustrated in fig. 9. Moreover, R[−x] =−R.x+P , so:

Leg 1 :(R.r1 +P ).(R.r1 +P ) −2(R.r1 +P ).r2 = r1.r1

Leg 2 :(R.r2 +P ).(R.r2 +P ) +2(R.r2 +P ).r1 = r2.r2

Leg 3 :(−R.r1 +P ).(−R.r1 +P ) +2(−R.r1 +P ).r2 = r1.r1

Leg 4 :(−R.r2 +P ).(−R.r2 +P ) −2(−R.r2 +P ).r1 = r1.r1

(7)

P

Figure 9: Vector P represents the offset between centroids of the primary and secondary surfaces.
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As R is an isometry fixing the origin, it will not affect the distance from the origin,
thus, R.r1.R.r1 = r1.r1, and similarly for the other corners. Combining this and
simplifying the Leg constraints in (eq. (7)), using the sums and differences of Legs
1 and 3, and Legs 2 and 4 respectively, we obtain the following constraints on P
and R given r1 and r2:

P.(R.r1− r2) = 0
P.(R.r2 + r1) = 0

P.P −2(R.r1.r2) = 0
P.P +2(R.r2.r1) = 0

(8)

The linear transformation, R, can be described using the Rodrigues’ Rotation
formula (Rodrigues 1840) using the axis of rotation, t, and angle of rotation, θ:

R.a= acos(θ)+(t×a)sin(θ)+ t(t.a)(1− cos(θ)) (9)

Using this formula to parametrize rotations by axis t and angle θ, and again taking
sum and difference for the last two constraints of (eq. (8)) we obtain the following
constraints:

P.(r1 cos(θ)+(t× r1)sin(θ)+ t(t.r1)(1− cos(θ))− r2) = 0
P.(r2 cos(θ)+(t× r2)sin(θ)+ t(t.r2)(1− cos(θ))+ r1) = 0

(cos(θ)−1) t.r1 t.r2 = 0
P.P −2r2.(t× r1 sin(θ)) = 0

(10)

Configuration space of the Spin-Valence unit
Given the constraints above we can now describe all possible configurations for this
Spin-Valence unit, and prove the theorem given above. By the third constraint in
(eq. (10)) one of (cos(θ)−1), t.r1 and t.r2 must be 0, so we can split into three
cases, two of which are symmetric other than swapping r1 and r2. We will consider
t.r1 = 0.

1 (θ = 0): If θ = 0, then the fourth constraint of (eq. (10)) would give P.P = 0,
this is therefore the undeployed case with no translation or rotation.

2 (t.r1 = 0, and θ 6= 0): The constraint that t.r1 = 0 forces t to be orthogonal to
r1. As r2 is also orthogonal to r1 and t is a direction (so length does not matter)
we can parametrize by φ with t = sin(φ)r2 + cos(φ)r1× r2. Fixing these values
takes the non-linearity out of the equations above, and setting sin(θ) = s and
cos(θ) = c we obtain the system of three linear equations, with three unknowns
(the coefficients of P ):
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P.(cr1 +s(t× r1)− r2) = 0
P.(cr2 +s(t× r2)+(1− c)t(t.r2)+ r1) = 0

P.P −2sr2.(t× r1) = 0
(11)

that can be solved to find these unknowns, and thus P uniquely.

For example if P is the zero vector, then r2.(t× r1) = 0 which is a triple product
so can be rewritten as t.(r1× r2) = 0, so t lies on the plane generated by r1 and
r2. As for a rhombus these are themselves orthogonal, the unit can deploy without
translation by rotating around either diagonal as shown in fig. 10.

Figure 10: Unit deploying with rotation and no translation tilting in the secondary surface (shown
with deployable 3D printed models).

Equating the primary surface geometry
To summarize sec. 3.2, solving the Spin-Valence geometry yields a two-dimensional
configuration space, with parameters, θ and φ, for each unit; θ controls the rotation
motion (vertical, or “up” displacement) of the deployed surface and φ dictates the
degree of surface non-parallelism, or tilting.

A computationally produced primary surface is generated using Python (Van Rossum
and Drake Jr 1995), using the SciPy optimization library (Oliphant 2007). First, the
Python script receives the Grasshopper data that describes the secondary surface
units. Then, it loops through all of the units and globally deploys their respective
primary surfaces according to the equations in sec. 3.2 and each unit’s prescribed
θ and φ parameters. An expansion factor that enlarges the deployed surfaces by a
set ratio is included to properly represent the inscribed size differences between the
primary and secondary surfaces as seen in fig. 11. This accounts for the actual leg
width in the physical construction.
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X X 

Figure 11: Inscribed size differences between primary and secondary surfaces on simplified and
full patterns.

The objective value for optimization is the total summation of distances between
adjacent deployed units, which is found by creating an algorithm to locate adjacent
sides and calculating the smallest distance between the skew segments. The
optimization is conducted by manipulating the θ and φ parameters for all units in
the quad mesh, using SciPy’s Sequential Least Squares Programming, or SLSQP,
method. Figure 12 illustrates the relationship between neighbouring units, and
fig. 13 shows the complete pavilion geometry after primary surface optimization.

a)

b)
c)

Figure 12: Relationship between neighbouring units, (a) point connection allows for primary
surface tiling to be non-coplanar with neighbouring tiles, (b) new connection made between
neighbouring secondary surface tiles, and (c) resulting triangular frame that repeats over the
system to create a space frame.

4 Constructed prototype and observations
A physical prototype in plasma-cut steel was produced from a 12-unit portion of
the pavilion design. The 3D geometry that was generated as described above was
flattened and translated from straight line segments into the more nuanced curves
that aid steel in folding at only specified locations. Three strips of four units each
were drawn, cut out of steel and assembled through folding and welding, as seen
in fig. 14. This act of deploying a small sample of double-curved Spin-Valence
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Figure 13: Pavilion design showing computationally formed primary surface after SciPy optimiza-
tion. Physical assembly would be built up using strips of units.

space frame revealed the potential importance of holding a consistent dimension of
overlap between unit hubs at their connections. This consistent dimension could
act as a reference to the fabricator and would allow for assembly without the aid of
2D or 3D construction documents for the design, such as plans or digital models.
Currently, the computational model does not allow for holding this dimension as a
constant, but that is a future goal.

Figure 14: 12-unit prototypes of double-curved space frames in chipboard and steel.

Alternatively, an augmented reality platform such as Fologram could allow for
precise deployment of units through projecting 3D data into the physical fabrication
space and notifying the fabricator when the part is within tolerances for the design.
There is still much to explore in tailoring the double-curved system to the specifics
of fabrication.
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5 Conclusions and future work
The methods used in this paper describe the optimization of a specific target
surface, but they can be used to create Spin-Valence space frames in a wide variety
of potential forms. These results open up many possibilities for future work to
refine and extend what is presented here.

At the moment, the surface used must be covered by a grid of quadrilaterals meeting
four to a corner, as this version is based on the square grid. This can accommodate
many target surfaces, but introduces a topological constraint, because such a grid
cannot cover a sphere or any other closed surface without a hole. This limitation
can be released by allowing three or five quadrilaterals to meet at a small number
of vertices, or alternatively, a small number of triangles or pentagons could be
introduced within the mesh.

The deployment geometry described above is limited in that each unit is assumed
to be a rhombus. We require all of the edges of the secondary surface quad mesh
to be close to the same length, which significantly simplifies the geometry. In
subsequent iterations, less constrained tile geometry could be used to allow any
number of modifications to the system, such as constraining overlaps at hubs to
be the same length for ease of fabrication. Constraints like those described in
the previous section that lend to greater constructibility need to be addressed in
subsequent iterations.

Currently, the system assumes that the individual units in the primary surface will be
connected at points (essentially pinned connections on each of the four unit edges
as shown in fig. 12). This provides freedom in the relationship among primary
surface tiles, which makes the primary surface optimization much easier. In moving
toward full fabrication of structurally capable space frames, these point connections
may need revision for strength. Structural analysis of this configuration will soon
reveal more about its behaviour and potential structural optimizations that have
geometric bearing.

As seen in fig. 15, many other tiling patterns may be employed using the Spin-
Valence system. Some target surface forms may lend themselves to better geometric
and structural optimizations using alternatives to the square grid shown in this
paper.

Another aspect of the system to explore further is the relationship between the
primary and secondary surfaces. In addition to the closeness of neighbours considered
here, the distance between the two surfaces could be controlled. In fact, the two
surfaces could actually pass through each other as shown in fig. 16. This would be
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of importance for general surfaces as the distance between units of the secondary
surface is bounded by a multiple of the distance between the same units in the
primary surface. For example, if the surface constructed is a sphere, the secondary
surface should lie on the inside where distances are shorter. Allowing the secondary
surface to pass through the primary would therefore permit continuous surfaces
with peaks (where the secondary should be below the primary) and valleys (where
the secondary should be above the primary). It is worth noting that we became
aware of this possibility thanks to the behaviour of the optimization tools described
above, so they were an effective research tool, not just a problem-solving technique.

Figure 15: Examples of Spin-Valence space frames constructed of chip board in alternative tiling
patterns.

(a) (b)

INFLECTION POINT

P1

P2

Figure 16: Sectional representation of (a) the secondary surface passing through the primary
surface to seamlessly accommodate changes from positive to negative curvature, and b) potential
to control the offset between the two surfaces, changing the depth of the space frame.
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