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Abstract
This paper proposes to extend the notions of mean and Gaussian curvatures of
smooth and discrete surfaces to semi-discrete surfaces. This class of surfaces, also
called piecewise developable surfaces is characterized by a zero Gaussian curvature
everywhere except for seams between two patches and vertices. The study focuses
on families of surfaces with constant Gaussian curvature along the seams. As a case
study of the problem, dForms, closed piecewise developable surfaces formed by two
discs of different shapes but equal perimeters, are chosen.

After a topological description of the semi-discrete surfaces, based on the Gauss-
Bonnet theorem, two types of dForms with constant Gaussian curvature are studied.
The first type describes a two-parameter family based on symmetrical cutting pat-
terns. The symmetry property allows the three-dimensional geometry of this subclass
of dForms to be fully described. The second type is asymmetrical and makes use
of the properties of the evolute of the curves of the cutting patterns to fulfil the
closure condition. In this case, we also propose a method to explore the space of
possible configurations using an augmented isometric flow method.

Keywords: Piecewise developable surfaces, dForms, Steiner formula, Gaussian cur-
vature, Gauss-Bonnet formula, Piecewise circular curve, Isometric flow.
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1 Introduction
Differential geometry has been used for two centuries to describe smooth curves and
surfaces locally. Much more recently, numerous research has been carried out to
define equivalent notions for meshes using discrete differential geometry (Bobenko
et al. 2008). Halfway between these theories, semi-discrete geometry, consisting
of a patching of developable surfaces, has been widely explored in particular for
constructive reasons. Its property of being isometric to the Euclidean plane makes
it particularly relevant for forming complex three-dimensional objects from standard
flat elements (sold in sheets or coils). Much of the effort has been focused on
improving the approximation quality of complex surfaces, whether for cladding
panels (Pottmann et al. 2008) or support structures (Tang et al. 2016). The
seams between surfaces have also received attention, in particular through the
work of Carl (2017) where he proposes a theory of curvature for semi-discrete
surfaces. It is also worth mentioning curved folding, which has been the subject of
numerous publications (Kilian et al. 2008; Tachi and Epps 2011), as it is of interest
for the manufacture of complex mechanical parts (Duncan and Duncan 1982),
specific industrial processes (Boersma and Molenaar 1995) or active kinematics of
architectural components (Vergauwen et al. 2013).

In this paper, we propose to focus on a more general type of assembly of developable
surfaces than curved folding: the curved patching. The first one assembles two
surfaces sharing the same unrolled edge while in the second case the edges have
different geometries (curvatures) after unrolling while keeping identical lengths.
With technological properties comparable to the folded geometries, seam forms as
designated by Demaine and Price (2010) have the advantage of contain Gaussian
curvature along their connecting edges, the quantity and distribution of which is
well known to help improve the mechanical behaviour of structures.

The dForms, closed piecewise developable surfaces formed by two discs of possibly
different shapes but equal perimeters(Wills 2006), provide an interesting case
to study curved patching. Initially limited to the field of industrial design, an
architectural experimentation at full scale (Leduc et al. 2019) demonstrated the
mechanical interest of this family of surfaces, but also the technological advantages
by simplifying building process and assembly details (fig. 1).

As the sphere and the Platonic polyhedra are geometric figures with constant
Gauss curvature for smooth and discrete geometry, is it not legitimate to ask which
equivalents have the same property for semi-discrete geometry?

In the first part we will give definitions of the Gaussian and mean curvatures localised
in the seams of piecewise developable surfaces (called PDS for the remainder of the
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document) based on Steiner’s formula. In the second part we will link these local
geometry definitions to the topology of PDS using the Gauss-Bonnet formula. Once
this theoretical framework has been developed, we will study two types of dForms
with constant Gaussian curvature. The first type, addressed in the third part,
describes a family of two-parameter surfaces based on symmetrical cutting patterns.
The symmetry condition allows us to fully describe the three-dimensional geometry
of these special dForms. The second type, discussed in the fourth part, identifies
dForms with asymmetric cutting patterns, generated from an initial configuration,
by an augmented isometric flow method.

Figure 1: Full scale prototype exhibiting closed piecewise developable surfaces acting as shear
components in a double-layer space structure.

2 Gaussian and mean curvatures of piecewise developable
surfaces

2.1 Steiner’s formula applied to piecewise developable surfaces
Let σt be the normal shift (offset) of a smooth surface σ along this normal vector
t.−→n . Then the area of σt is a quadratic polynomial in t (Steiner Formula):

A(σt) =A(σ)−2tH(σ) + t2K(σ) (1)

where K(σ) =
∫
σKdA and H(σ) =

∫
σHdA are the total Gaussian and mean

curvature of σ. The same definition was used by Bobenko et al. (2008) to define
analogous notions of discrete Gaussian and mean curvatures. At a vertex p of a
polyhedral surface σ, the angle defect is called the Gaussian curvature:

K(p) = 2π−
∑

αi (2)

where αi are the angles between neighbouring edges sharing the point p.
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At an edge e of a closed polyhedral surface σ, the mean curvature is defined by:

H(p) = 1
2θ(e)`(e) (3)

where `(e) is the length of the edge e and θ(e) is the angle between the normals of
the adjacent faces sharing the edge e (θ(e)> 0 in the convex case and θ(e)< 0
otherwise).

Gaussian and mean curvatures are contained within different geometric entities for
polyhedral surfaces: Gaussian curvature is localised in the vertices whereas mean
curvature is localised in the edges. The faces have no curvature.

By analogy with discrete surfaces (fig. 2), we define the elements for PDS as
follows: face as a single smooth developable surface, edge as the intersection of
two faces (except for boundaries) and vertex as the intersection of at least three
edges (except for corners).

Figure 2: Piecewise developable surface: (a) terminology of the elements, (b) orientation and
naming conventions.

In the case of PDS, we investigate the amount of Gaussian and mean curvatures
localised within vertices, edges and faces (fig. 3).

Figure 3: Steiner formula : illustration of the contribution for the Gaussian curvature of the faces
(blue), edges (red) and vertices (green) in the case of : (a) smooth surfaces, (b) semi-discrete
surfaces, (c) meshes.

Using an approach similar to that carried out on polyhedral surfaces, Gaussian
curvature is defined at a vertex as the angular defect. The faces, being developable,
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only have mean curvature and the total mean curvature corresponds to:

H(σ) =
∫
σ
HdA= 1

2

∫
σ
κ1dA (4)

where κ1 is the non-zero principal curvature of σ.

The case of the edges is more delicate and a first qualitative indication is given by
considering a PDS as the limit case of a one-directional refinement of a PQ mesh
(Liu et al. 2006). In the direction of refinement, the edges and vertices merge into
the seam curve which should contain the differential quantities localised in these
elements, i.e. both Gaussian and mean curvature. In order to quantify these values,
the problem can be approached by evaluating the area of the surface resulting from
the offset of the curvilinear edges defined as a portion of pipe surface with the
seam curve as its directrix.

Let p be a point located on the edge curve ε shared by the faces σ1 and σ2. The
seam ε is called ε1 (ε2) when related to σ1 (σ2). The orientation of ε1 and ε2
is chosen counterclockwise according to the normals −→N1 and −→N2 (fig. 2); ε is
oriented in the same way as ε1. The curves ε1 and ε2 therefore have two opposite
orientations.

Let the frames FD1(p,−−→TD1 ,
−−→
BD1 ,

−−→
ND1) and FD2(p,−−→TD2 ,

−−→
BD2 ,

−−→
ND2) be the Darboux

frames along ε1 and ε2 on the surfaces σ1 and σ2. FF (p,−→TF ,
−→
NF ,
−→
BF ) is the Frenet

frame of the curve ε. The angle θ1 (−θ2) is then defined as the oriented angle
between −→NF and −−→ND1 (−−→ND2). The angular opening of the pipe surface of radius t
is variable and equal to θ(p) = θ2−θ1 (see fig. 4).

The pipe can be locally approximated by a torus of minor radius t, the central circle
of which is the osculating circle of the seam. The partial area of the torus is given
by the formula:

Atorus =
∫ ϕ2

ϕ1

∫ θ2

θ1

(
tR+ t2 cosθ

)
dθdϕ (5)

where t is the minor radius of the torus and the value of the normal shift, R is the
major radius of the torus and the radius of curvature of ε at p. θ describes the
angular opening of Atorus along the minor circle and ϕ along the major circle.

The area measure dAtorus corresponding to the arc length measure of the seam
curve ds=Rdϕ is derived from the previous formula:

dAtorus =
∫ θ2

θ1

(
tR+ t2 cosθ

)
dθ

ds

R
(6)
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Figure 4: Definition of the Darboux and Frenet frames at point p of the seam.

dAtorus =
(
t[θ2−θ1] + t2

[sinθ1
R
− sinθ2

R

])
ds (7)

By introducing κg1 and κg2 , geodesic curvatures of ε1 and ε1 at p:

dAtorus =
(
t[θ2−θ1] + t2[κg1 +κg2 ]

)
ds (8)

By identifying the linear and quadratic terms of Steiner’s formula, the local Gaussian
and mean curvatures in the seam are defined by:

K(p) = κg1(p) +κg2(p) (9)

H(p) = 1
2θ(p) (10)

2.2 Interpretation of the result
These definitions are fully compatible with the discrete case described above. For
polyhedral surfaces, the geodesic curvature of the edges being zero, the Gaussian
curvature is also zero at all points of the edges (eq. (9)). On the other hand, the
constant angle between the local normals along the edge makes eq. (10) consistent
with eq. (3).

These formulas are also compatible with the well-known results of curved folding.
Curved folds, like simple folds, has the property of being flattenable, implying a zero
Gaussian curvature for any point on the faces or the fold. This is well confirmed by
the eq. (9) since in the case of the curved folds, the geodesic curvatures have equal
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and opposite values. Finally, we check the compatibility of the result with the one
described in Pottmann and Wallner (2001): the osculating plane of the fold curve is
the bisector plane of the two local tangent planes of the surfaces σ1 and σ2. The two
tangent planes are described by the pairs of vectors

(−−→
TD1 ,

−−→
BD1

)
,
(−−→
TD2 ,

−−→
BD2

)
and

represented by angles β1 = θ1− π
2 =

(−→
NF ,
−−→
BD1

)
and β2 =−θ2− π

2 =
(−→
NF ,−

−−→
BD2

)
.

In the case of the curved folds, β1 and β2 are equal and opposite due to of the
nullity of the quadratic term of eq. (7) involving:

sinθ1 = sinθ2 (11)

Figure 5: The three cases of Gaussian curvature whose sign is easily read by locating dAtorus on
the osculating torus: (a) K(p)> 0, (b) K(p) = 0, (c) K(p)< 0.

3 Topologies of dForms
In differential geometry, the Gauss-Bonnet formula connects the geometry (in
the sense of curvature) of a surface to its topology (in the sense of the Euler
characteristic χ). In the simple case of a compact surface (without boundary), the
formula is given by:

2πχ=
∫
σ
KdA (12)

In the case of piecewise smooth surfaces whose edges may themselves be piecewise
smooth curves, the contribution of the edges and vertices of each piece should be
considered. As recalled by Raffaelli et al. (2018), the Gauss-Bonnet formula for a
patched surface made up of Nf faces called σi, Nei edges by faces σi called εij ,
Nv vertices with Nαk angles between neighbouring edges called αkm becomes:

2πχ = Kf + Ke + Kv

2πχ =
∑Nf
i=1
∫
σi
KdA +

∑Nf
i=1
∑Nei
j=1

∫
εij
κgds +

∑Nv
k=1

(
2π−

∑Nαk
m=1αkm

) (13)

where Kf , Ke, Kv are the total curvatures localised in the faces, edges and vertices,
respectively.

∫
εij
κgds is the total geodesic curvature of edge εij on face σi.
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In the specific case of piecewise developable surfaces, of interest here, the Gaussian
curvature is zero at all points on the faces, which simplifies the previous formula by
removing the first term from the eq. (13).

We illustrate the Gauss-Bonnet formula applied to PDS by using the surface
obtained by folding of the Vesica Piscis. This shape has the advantage of exhibiting
simultaneously two vertices, two curved folding and one curved patching (fig. 6).
The cutting pattern is formed by the intersection of two disks with the same radius,
intersecting in such a way that the centre of each disk lies on the perimeter of the
other (Fletcher 2004). Mundilova and Wills (2018) introduce an extra parameter
in their study by modifying the distance d between the two centres. Excluding
displacement and scale transformations, it is a parametric shape with one degree
of freedom. With the variables as defined in fig. 6, it is easy to establish that:

θ = γ

L1 = L3 = (2π−θ)R
`1 = `21 = `23 = `3 = θR

(14)

Figure 6: dForm based on the Vesica Piscis figure: (a) Physical model being assembled, (b)
Cutting patterns showing the nature of the assemblies (point, fold (green), patch (red)) and
naming conventions.

Taking into account the signed geodesic curvature of the cutting pattern curves,
the three terms of the Gauss-Bonnet formula as defined in eq. (13) are:

Kf = 0
Ke = 1

R(L1 +L3) + 1
R(`21 + `23)− 1

R(`1 + `3) = 2(2π−θ)
Kv = 2θ

(15)
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By summing the three contributions, we obtain a constant value that is independent
of the parameterization of the geometry: Kf +Ke+Kv = 4π, corresponding to a
Euler characteristic χ= 2 defining surfaces which are homeomorphic to a sphere.

Ghys (2014) analyses the Brazuca (official match ball of World cup 2014) as a
polyhedron whose Gaussian curvature of the vertices has disappeared (

∑
αi = 2π)

and is distributed along the edges. Delp and Thurston (2011) propose, taking the
Gauss-Bonnet relationship as a starting point, a generative method of shapes for
an analogous distribution of the Gaussian curvature. In a similar way and based on
the previously stated eq. (9), we will study PDS with constant Gaussian curvature.
This curvature is also exclusively contained in the seams, excluding shapes with
vertices. For this reason, we limit our study to the case of dForms which are
homeomorphic to a sphere and made up of two topological discs bounded by a
curve of index 1. These shapes thus correspond to the simplified Gauss-Bonnet
formula:

4π =
∫
ε
(κg1 +κg2)ds (16)

4 dForms with symmetrical cutting patterns
4.1 Two-parameter family of cutting patterns
A trivial case meets immediately the constraints outlined at the end of the previous
part. It is a dForm made of two identical cutting patterns, a kind of developable
tennis ball (see fig. 7 and Cantat (2012)). Each cutting pattern is composed of two
half-circles of radius R and two line segments, all four of identical length `= πR.
With the arc facing the line segment, the Gaussian curvature κg1 +κg2 = 1/R is
constant and the resulting dForm consists of two half-cylinders with perpendicular
axes and two half-disks. It directly satisfies the Gauss-Bonnet formula:

K(σ) = 4`(κg1 +κg2) = 4πR
( 1
R

+ 0
)

= 4π (17)

This type of cutting pattern with two distinct radii of curvature (among which one
may be infinite as previously) can be generalized as a two-parameter family.

The two identical cutting patterns to be assembled are defined by a first discrete
parameter N which characterizes the symmetry group to which they belong: the
dihedral group DN . The cutting patterns are thus made up of N symmetrical
branches. A second continuous parameter α, defines the opening angle of the arc
located at the end of the branch. A specific value of α for which the second arc
has zero curvature separates two domains of convexity of the cutting patterns (see
fig. 8).
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Figure 7: Elementary dForm and cutting patterns consisting of half-circles and line segments.

Figure 8: Double entry table showing the cutting patterns and corresponding dForms for values
of N = 2,3,4,5 and α with the three cases of convexity.

4.2 Parametrisation
Let C3d be the seam curve of the dForm and C2d the same developed curve on the
xy plane. This latter curve defines the N -branch cutting pattern of the two parts
to be assembled. Each curve is composed of 2N arcs: N identical arcs denoted
Aαi alternating with N also identical arcs denoted Aβi with i ∈ {0 . . .N −1}. The
geometry of the arcs (Aαi ,Aβi) is defined by the three coupled parameters: opening
angle (α,β), radius of curvature (Rα,Rβ) and length (`α = αRα, `β = βRβ). The
curve C2d being oriented counterclockwise, the angles and radii of curvature can be
positive or negative depending on their own orientation compared to the orientation
of C2d; with lengths that are always positive.
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Figure 9 shows the example of arcs Aαi whose angle α and radius of curvature
Rα are positive, the counterclockwise direction of the arc and the orientation of
the curve C2d being the same. On the other hand, β and Rβ are negative in this
configuration. The parameters of the arcs Aβi are entirely defined from those of
the arcs Aαi . For assembly reasons, the lengths of the arcs `β are equal to `α.
Furthermore, the closing condition with respect to the curvature of a curve of index
1 and length L expressed by the integral

∫
Lκds= 2π corresponds in our case to

N(α+β) = 2π. The radius Rβ can then be derived from the relation: `β = βRβ

β = 2π
N −α

Rβ = Rα
α
β = Rαα

2π
N
−α

`β = `α

(18)

The specific value of α introduced in the previous paragraph and defining the
convexity of the cutting pattern is given for Rβ =∞ or β = 0, i.e. α= 2π/N .

Figure 9 shows the cutting pattern in the coordinate system (Oα,−→x ,−→y ) having as
origin and x-axis the centre and axis of symmetry the first arc Aα0 . The positions of
the centres Oαi , Oβi of the arcs Aαi , Aβi and OD, the diedral centre of symmetry
of the curve C2d, can then be determined by simple trigonometric relations. The
coordinates of the first centre of the arcs Aα0 , Aβ0 are given here, the others being
derived by rotation of Oα0 and Oβ0 by an angle i2π

N around the point OD.

Oα0 =
(
Oα0x

Oα0y

)
=

(
0
0

)

Oβ0 =
(
Oβ0x

Oβ0y

)
=

(
(Rβ−Rα)cos α2
(Rβ−Rα)sin α

2

)

Oα0 =
(
ODx
ODy

)
=

(
Oβ0x−Oβ0y cot π

N

0

) (19)

We check that the Gauss-Bonnet formula is well satisfied:

K(σ) = 2N`α

(
1
Rα

+ 1
Rβ

)
= 2N`α

(
1
Rα

+ Rαα
2π
N −α

)
= 4π (20)

The arc Aαi is parameterized in polar coordinates in the coordinate system
(Oαi ,

−→x ,−→y ), see fig. 9. The point pα̃i(Rα, α̃i) belongs to the arc Aαi and α̃i
represents the value of the angle

(−→x ,−−−−→Oαipα̃i

)
. To this point located on the arc

Aαi of the first cutting pattern corresponds a point pβ̃i(Rβ, β̃i) located on the
arc Aβi of the second cutting pattern with β̃i denoting the value of the angle
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(−→x ,−−−−→Oβipβ̃i

)
. The angles α̃i and β̃i are in the range [αsi ,αei ] and [βsi ,βei ] of

length α and β. The point p belonging to the seam of the dForm is the result of
the identification of the points pα̃i and pβ̃i . By virtue of the equality of the arc
length at point p= pα̃i = pβ̃i , the relation Rα(α̃i−αsi) =Rβ(β̃i−βsi) implies:

β̃i = Rα
Rβ

(α̃i−αsi) +βsi (21)

Figure 9: Angle and distance naming convention: cutting pattern for N = 3, α= 7π
6 .

4.3 From 2d cutting pattern to dForm
The modelling of isometric deformation of flat shapes into three-dimensional surfaces
is not a trivial exercise. The case of dForms is even more complicated due to the
global nature of the problem, as pointed out by Pottmann and Wallner (2001).

At the present time, two different approaches can be identified in the literature.
The first is based on optimization algorithms that minimize the energy contained
in a triangular mesh, such as the Surface Evolver software (Brakke 2014) used by
Paul Bourke (nd) to model dForms. The second approach is based on Alexandrov’s
theorem showing the existence of a convex polytope with a given metric on the
boundary (Bobenko and Izmestiev 2008).
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In our case, the symmetry conditions of the cutting patterns give us the possibility
to fully describe the geometry of the three-dimensional shape.

Let us first consider the deformation kinematics of the planar cutting patterns to
form the dForm in space (fig. 10). We denote (OD1 ,

−→x1,
−→y1 ,
−→z1) and (OD2 ,

−→x2,
−→y2 ,
−→z2)

the two frames attached to the cutting patterns to be assembled. These two frames,
linked by a screw motion, are located in a global coordinate system (O,−→x ,−→y ,−→z )
such that OD1(0,0,−h), −→z = −→z1 , (−→x ,−→x1) = − π

2N and OD2(0,0,h), −→z = −→z2 ,
(−→x ,−→x2) = π

2N . Each point of a branch then moves in a plane parallel to its plane
of symmetry and the developable surface of the branch takes the form of a general
cylinder whose rulings remain parallel to the xy plane and perpendicular to the
plane of symmetry.

Figure 10: Symmetrical dForm: (a) Assembly kinematics of the dForm, (b) Visualization of
the polygonal horizontal section: regular polygon (green), symmetrical polygon (DN ) (blue),
degenerate polygon (red).

Let us now consider the dForm when assembled (fig. 10). Since all the rules are
parallel to the xy plane, the intersection of a plane of equation z = t with the dForm
is a 2N -sided polygon belonging to the dihedral symmetry group DN , centered on
the axis (O,−→z ). This polygon is regular for t= 0 and degenerates into a regular
N -sided polygon for t= {−h,h}.

Describing the geometry of the dForm is therefore equivalent to determining the
geometry of polygons and their position in space. The symmetry conditions indicate
the position and rotation of these polygons in the plane (O,−→x ,−→y ). The remaining
unknowns to be determined are the side lengths and the positioning of the polygons
along the axis (O,−→z ).

The half-lengths of the sides of the polygons, i.e. the distance from point p to
the planes of symmetry of the two branches to which p belongs, can be measured
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directly on the cutting patterns. For symmetry reasons, it is only necessary to
consider the first arcs Aα0 and Aβ0 .

Dα̃ = Rα sin α̃0
Dβ̃ = −Oβ0y−Rβ sin β̃0

(22)

Dα̃ and Dβ̃ are always positive, according to the sign conventions for radii and
angles (e.g. in fig. 9, Oβ0y < 0 and Rβ < 0).

Knowing the planes of symmetry of the polygon, it is possible to determine the
coordinates px and py of point p in the plane (O,−→x ,−→y ). To determine the pz
coordinate, we rely on the preservation of the arc length parameterization s(α̃) of
the curve (isometric deformation) which is given by:

s(α̃) =
∫ α̃

αs
ds=Rα(α̃−αs) (23)

The above considerations imply z′(s)2 = 1−x′(s)2−y′(s)2 and the symmetry of
the shape makes it possible to bound the angle domain to α̃0 ∈ [αs0 ,π].

p(px,py,pz) =


Dα̃

1
sin π

N
Dβ̃ + cot π

NDα̃∫ α̃
αs

√
1−x′(s)2−y′(s)2ds

 (24)

With ᾱ as the variable of integration:

ds = Rα dᾱ

dx = Rα cos ᾱ dᾱ
dy = Rα

sin π
N

[
cos π

N cos ᾱ− cos β̄
]
dᾱ

From a discrete point of view, the seam curve can be considered as a polygonal
curve resulting from the isometric deformation of the cutting patterns. Each arc
Aαi and Aβi is subdivided into n arcs of equal length; subdivision points are
denoted pαk and pβk with k = {0 . . .n}. Corresponding points on the discrete seam
of the dForm are denoted pk(pkx ,pky ,pkz).

In a similar way to the continuous approach, the values pkx and pky are determined
directly from the cutting patterns. The coordinate pkz is calculated by discrete
integration, the initial position of the point p0 on the median plane (z = 0) being
known. For a sufficiently fine discretization, we can consider in a first-order
approximation that the length of the arc (pk−1pk) = Rαα

n . The point pk is thus at
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the intersection of the sphere S
(
pk−1,

Rαα
n

)
with the planes x= pkx and y = pky .

The point pk therefore has the coordinates:

pk(pkx ,pky ,pkz) =


Dαk

1
sin π

N
Dβk + cot π

NDαk√(
Rαα
n

)2
− (pkx−p(k−1)x)2− (pky −p(k−1)y)2 +p(k−1)z


(25)

4.4 Curvature and torsion of the seam curve
We saw in the previous paragraph that it is possible to formulate the parametric
equation of C3d as a Rieman integral. However, the differential properties of this
curve can be expressed explicitly by proceeding to the successive derivatives of
eq. (24). Taking the convention Ċ3d = dp

ds , C̈3d = d2p
ds2 ,

...
C 3d = d3p

ds3 and since the
curves C2d and C3d are parameterized by arc length, the curvature and torsion of
the curves are defined by Do Carmo (1976):

κ = ‖C̈3d‖

τ = (Ċ3d∧C̈3d)·
...
C 3d

κ2

(26)

Figure 11: Curvature of the seam curve as a function of the arc length.

The details of the calculations in our case are not given here, but the graphs of
the curvature as a function of the arc length of the seam (origin taken at p0) are
given for three different dForms

(
N = 3 and αj =

{
π
2 ,

2π
3 ,

4π
3

}
for j = 1,2,3

)
in

fig. 11. These three angles represent the convex, limit and non-convex cases. It
should be noted that in order to superimpose the three graphs, we consider the
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value Řαj = Rαj
`αj

to normalize the length of the arcs: `αj = `βj = 1. Similarly, the
displayed value of the curvature κ̌j is normalized by the radius of the arc Aαj :
κ̌j = κj · Řαj

5 dForms with dissymmetrical cutting patterns
5.1 General description of the process
Without pretending to describe them exhaustively, we aim to identify some dForms
whose seams have constant Gaussian curvature and their cutting pattern curves
are neither identical nor symmetrical. As before, these are made up of arcs with
tangential continuity, often referred to in the literature as Piecewise Circular Curves
(PCC).

Let C1 be the boundary curve of the first cutting pattern. It consists of n arcs
of circles A1i defined by the three coupled parameters (α1i ,R1i , `1i). As before,
angles and radii of curvatures are defined algebraically according to their orientation
with respect to the counter-clockwise orientation of the curve. The curve C2 of the
second cutting pattern, which also consists of n arcs of circles A2i with parameters
(α2i ,R2i , `2i)) is then completely defined by the parameters of the first curve: the
lengths of the arcs are in equal pairs to enable the cutting patterns to be assembled
and the radii of curvature are determined by the constant Gaussian curvature
constraint.

The difficulty of this exercise lies mainly in the global problem of satisfying the
simultaneous closure in position and tangency of the two curves C1 and C2. For
this purpose, we investigate the properties of the evolute of PCCs on which we will
impose conditions ensuring the closure of the related curve.

5.2 Piecewise circular curves and evolute
The evolute of a curve, the locus of all its centres of curvature is redefined by
Banchoff and Giblin (1994) in the case of the PCCs: the evolute is the polygonal
curve connecting the centres of the circular arcs.

Let ci be the center of the arc Ai (also the corresponding vertex of the evolute).
The connecting point between arcs Ai and Ai+1, denoted pi, is located on the
support line of the edge Ei of the evolute connecting the centres ci and ci+1. The
tangency condition between two consecutive arcs implies that the length of the
vector −→e1 =−−−→cici+1 corresponding to the edge Ei is directly related to the radii of
the arcs of circles Ai and Ai+1, more precisely, ‖−→e1‖= |Ri+1−Ri|= |`ei | with `ei
defined as the signed length of Ei. The rotating angle between the vectors −→ei and
−−→ei+1 is denoted αei .
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Figure 12: Naming convention: (a) PCC and related evolute, (b) Angles definition.

We are now considering the conditions on the evolute to ensure the closure in
position and tangency of the related PCC. Given the definition of the evolute of a
PCC, any closed PCC has a closed polygonal evolute, which is the first condition
for closure.

In addition, we saw previously that for any pair of arcs Ai and Ai+1 connected in
tangency, the signed length of the evolute is given by `ei =Ri+1−Ri. In particular,
for the side En−1 which closes the evolute, `en−1 =R0−Rn−1. The zero telescopic
sum of the signed lengths gives the second closing condition, summarized with the
first one as:

n−1∑
i=0

−→ei = −→0
n−1∑
i=0

`ei = 0
(27)

5.3 Generative process
The process of generating solution families of non-symmetric but constant Gaussian
curvature dForms is a two-step process. An initial solution is generated first by
optimization. A geometrical flow is then applied that satisfies both the constant
Gaussian curvature constraint and the closure conditions of the two PCCs.

The first cutting pattern C1 is arbitrarily generated from a closed smooth curve
approximated by biarcs (Piegl and Tiller 2002). This technique guarantees a
connection in position and tangency between the n arcs A1i(α1i ,R1i , `1i).
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The second cutting pattern C2 is generated by computing the parameters of the n
arcs A2i(α2i ,R2i , `2i) from A1i . According to the eq. (9), K = κ1i +κ2i , where
K is the Gaussian curvature, κ1i and κ2i are the curvatures of the arcs A1i and
A2i . Since the Gaussian curvature is constant and entirely contained in the seam,
it is derived from the Gauss-Bonnet formula: K = 4π

L with L=
∑
`i.

`2i = `1i
R2i = 1

K−κ1i

α2i = α1i

(
K
κ1i
−1
) (28)

In the general case, the concatenation of the computed arcs A2i yields an open curve
C2. By applying the closure conditions given in eq. (27) on the related evolutes of
curves C1 and C2, it is possible to close them by constrained optimization.

The formulae for the closing conditions of a PCC indicate that they depend only
on the relationship between the signed lengths of the sides of the evolute and the
difference in the radii of the arcs, independently of the turning angles, provided that
the evolute remains closed. It indicates that we can consider the evolute as a closed
rigid bar linkage whose joints are the centres of discs that "roll" on each other.
The PCC supported by these discs remains closed regardless of the deformation of
this mechanism (fig. 13).

Figure 13: The isometric deformation of the evolution preserves the closure of the related PCC.

This type of deformation is obtained by the application of an isometric flow that
maintains, over time, the length of a curve and its closure whilst modifying its
geometry (its curvature). The constraints related to this type of flow are described
for a continuous curve by Crane et al. (2013).
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In the case of a polygonal curve that we consider here, the constraints become:

〈α̇ei ,1〉= 〈α̇ei , cix〉= 〈α̇ei , ciy〉= 0 (29)

where 〈.〉 is the scalar product, α̇ei = dαei
dt is the time derivative of the turning

angle, cix and ciy are the coordinates of the vertices of the evolute.

The isometric flow applied to the evolute of the curve C1 guarantees that the closure
of the first cutting pattern is preserved but is not sufficient to ensure the closure of
the curve C2. It is therefore necessary to increase the constraints of the isometric
flow applied to the first cutting pattern by integrating the closure conditions of curve
C2 by passing them through the relations defined in eq. (28). The implementation
of this augmented isometric flow does not present any additional theoretical issues
(see the example of fig. 14). However, the study of the general problem requires
the description of numerous bifurcations which make an exhaustive description of
it inappropriate here.

Figure 14: Dissymmetrical dForm: (a) Initial configuration (physical model), (b) Family of cutting
patterns and evolutes generated by augmented isometric flow.

6 Conclusions and further work
By locating and quantifying the differential properties in the seams of piecewise
developable surfaces, we have highlighted the existence of shapes, symmetrical or
not, with the particularity of having a constant Gaussian curvature. Even if the
applications do not seem immediate, this work should be considered as a preliminary
step towards a better control of the distribution of the Gaussian curvature within
shell structures covered with developable panels.
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To further develop this hybrid design combining constructive rationality and struc-
tural efficiency, the model will have to integrate more geometric components to
consider various architectural and technical constraints. The first ideas to be ex-
plored are to increase the number of patched surfaces and to apply these principles
to an open boundary. Finally, acting on the Gaussian curvature itself by optimizing
a prescribed curvature rather than a constant curvature or by introducing non-
zero Gaussian curvature vertices should make it possible to significantly improve
structural behaviour.
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