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Abstract
Graphic statics, a 19th century methodology for the design and analysis of trusses in
static equilibrium, has re-emerged recently as a comprehensive framework for design-
ing and analyzing materially efficient structures. Specifically, computational frame-
works have been introduced for the structural morphogenesis of compression-only
3D polyhedral trusses by Akbarzadeh et al. (2015). Moreover, the fundamental rela-
tion between tension-and-compression 3D trusses in static equilibrium and 4D stress
functions has been showed in McRobie (2016). Furthermore, a direct mathematical
construction for generating pairs of reciprocal 4D stress functions, and by projection
pairs of reciprocal 3D form and force diagrams, has been discussed in Konstantatou
et al. (2018). The central role of stress functions in structural morphogenesis was
already known by Maxwell (1864a) who used projections of polyhedral (Airy) stress
functions to derive 2D trusses in static equilibrium while obtaining design and analy-
sis freedoms. In this paper we apply these constructions to their higher-dimensional
equivalents and show how structural morphogenesis of 3D polyhedral, trusses can
also have as a starting point 4D stress functions of the form space. The presented
direct method has a generative aspect where an underlying grammar can produce a
wide range of typologies and can be applied to compression-and-tension cases.

Keywords: Graphic statics, reciprocal diagrams, Airy stress functions, structural
morphology, structural design
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1 Introduction
Contemporary built environment industry is faced with a lack of effective communi-
cation between those who design forms and those who analyse them. Moreover, a
need for material efficiency with regards to how we build our structures is more
pressing than ever. Thus, there is a growing tendency to shift towards interactive
design and analysis tools which can inform the early conceptual design stages with
structural performance - leading to more materially efficient structures - whilst
adopting a language common to a wide range of researchers and practitioners.
Such a language could be the visual and intuitive language of geometry. To this
end, a framework of particular importance - which has re-emerged again recently -
is the one of graphic statics.

Graphic statics is a 19th century method for the analysis and design of structures
in static equilibrium. While they were popular among practitioners in the second
half of the 19th century, they saw a 20th century decline; however, in the turn
of the 21st century they have re-emerged largely due to significant advances in
Computer Aided Design (CAD) and contemporary visualisation capabilities. This
is because, CAD developments enabled the generalisation of graphic statics to
the 3rd dimension and their implementation in terms of computational design and
analysis frameworks for a variety of case studies Graphic statics, and more generally
geometry-based analysis and design frameworks, hold the promise of facilitating the
bridging of the gap between structural and architectural design, and hence between
architects and engineers.

This type of methodologies are often valued for their intrinsic visual and intuitive
nature. To this end, of particular importance are the core concepts of reciprocal form
and force diagrams - geometrical elements of which represent structural members
or their internal forces. These equip the design and analysis frameworks with a
number of advantages such as: incorporation of structural performance in the
early conceptual design stages; an interactive approach where designers have more
leverage, design and analysis freedoms on the outcome of the model; structural
morphogenesis opportunities by manipulating reciprocal diagrams; a new approach
of design for structures which are by definition in static equilibrium (as opposed
to conventional free-from design). This research paper will explore such structural
morphogenesis capabilities for spatial trusses in static equilibrium based on the idea
of reciprocal 4-polytopic stress functions.
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2 Background
2.1 Graphic statics
The development of graphic statics can be attributed to the legacy of Da Vinci,
Galilei, Newton (Zalewski and Allen 1998), Hooke, Poleni and Stevin (Heyman
1995) among others. Following Varignon’s funicular polygon (Varignon 1725),
Cremona, Cullman, Bow, Maxwell and Rankine contributed significantly to their
development throughout the 19th century. For a detailed historical analysis the
reader is pointed to Kurrer (2008). It should be highlighted that Maxwell is
acknowledged as the originator of the concept of reciprocity between form and
force diagrams (Charlton 1982; Kurrer 2008; Zalewski and Allen 1998) and the one
who proposed a geometrical construction of these diagrams within the context of
projective geometry.

Maxwell’s graphical approach to the analysis of trusses (Maxwell 1864a, 1870) was
heavily influenced by Chasles’, Monge’s and Poncelet’s contribution to geometry at
the time. In particular, from the pole and polar construction and the principle of
duality, which expressed the reciprocity between form and force diagrams. Moreover,
Maxwell synthesised the duality principle of projective geometry with Euler’s work
on polyhedral counting to develop a theory of reciprocal diagrams in statics. He
made the profound observation that two-dimensional reciprocal diagrams obey
the counting rules of polyhedra - when it comes to their constituent geometrical
elements (points, edges, faces) - and that a 2-dimensional form diagram has a force
reciprocal when it is a projection of a polyhedron (Maxwell 1864b). Furthermore,
Maxwell was familiar with the work of Airy (Airy 1862) - and thus with the Airy
stress function - which combined with his knowledge of Poncelet’s and Monge’s
theory of polar figures (Charlton 1982) to develop a construction of reciprocal
polyhedral stress functions the projections of which are reciprocal form and force
diagrams (Maxwell 1870). This type of constructions did not find a widespread
application among practitioners and researchers throughout the 20th century. One of
the notable exceptions was in the field of theoretical mathematics, and in particular
of rigidity theory, from the structural topology group at the University of Montreal
(Crapo 1979; Crapo and Whiteley 1994). Moreover, Maxwell’s constructions -
and in particular his combination of the projective geometry duality along with a
metric - were further developed from Strubecker (Strubecker 1962) in the context
of isotropic geometry in 1960s.

The visual and intuitive appeal of graphic statics along with contemporary CAD
developments and tne intrinsic interrelation between form and force resulted in
numerous educational, computational and theoretical applications and advancements
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over the last two decades such as: engineering and architectural education (Allen
and Zalewski 2010; Muttoni, A. 2011); design of compression-only or tension-
only spatial funicular structures by means of the Thrust Network Analysis (TNA)
(Block and Ochsendorf 2007); design of compression-only or tension-only plane-
faced polyhedral structures based on subdivisions and manipulations of spatial
force diagrams (Akbarzadeh et al. 2015); transformation of form diagrams in
static equilibrium (Fivet 2016); design and analysis of spatial structures (D’Acunto
et al. 2019); optimisation tools developed in applied research groups in industry
(Beghini et al. 2014; Mazurek et al. 2016) and optimisation of grid-shells (Pellis and
Pottmann 2018). It should be highlighted that the majority of current graphic statics
approaches rely on the use of iterative algorithms and procedural reconstruction
techniques and operate on a local node-by-node basis. Alternatively, direct global
implementations include McRobie (2016); Konstantatou et al. (2018), which are
grounded on the concept of higher dimensional reciprocal stress functions as a
technique for generating pairs of reciprocal form and force diagrams.

2.2 Reciprocal diagrams and discrete stress functions
Reciprocal form and force diagrams, were developed as early as Hooke’s time (17th

century) for the safety assessment of masonry structures (Charlton 1982; Kurrer
2008). However, their in-depth conception and definition, has been attributed
to Maxwell for the 2D case (Maxwell 1864b, 1870) and Rankine (Rankine 1864)
for the 3D case. In the 2D case, form edges map to force edges and form nodes
to closed force polygons. As a result, a 3D duality is obeyed between reciprocal
geometrical elements. This 3D duality is in fact between the overarching reciprocal
polyhedral stress functions which can be mapped to each other through a polar
transformation, or polarity, using a paraboloid of revolution as Maxwell succinctly
mentioned (Maxwell 1870). In the 3D case, form edges correspond this time to
force faces, and nodes to closed polyhedral cells. As a result, a 4D duality is
obeyed between the overarching 4-polytopic stress functions. Thus plane-faced,
polyhedral, 3D trusses in static equilibrium are projections of 4-polytopic plane-faced
stress functions. These were defined in equation form in Maxwell (1870) and in
contemporary nomenclature are called Maxwell-Rankine stress functions (McRobie
2016).

Other properties of reciprocal form and force diagrams are: their interchangeability
(either can be seen as the form or force) and the fact that there is no distinction
between lines of action of the external forces and structural members (McRobie
et al. 2016; Mitchell et al. 2016). The result of the latter is that external forces can
be combined with the form diagram to an equivalent self-stress truss. Consequently,
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there is no distinction between these two cases (self-stressed, with external loading)
and they are geometrically equivalent.

The frameworks we analyse here are self-stressed, pin-jointed structures. We will
denote a 3D framework of a polyhedral structure P as a set of of vertices v, edges e,
faces f and cells c: P(v,e,f,c) and its reciprocal to be P′(v′,e′,f ′, c′). These can
also be lifted in 4-dimensional space to a pair of reciprocal 4-polytopes. It should
be noted that 4-polytopes are the equivalent of polyhedra in the 4-dimensional
space where the cells lie on hyper-planes in the same way that faces lie on planes;
hyper-planes constitute 3-dimensional subspaces in 4-dimensional space in the same
way that planes constitute 2-dimensional sub-spaces in 3-dimensional space.

The correspondence between geometrical elements for 2D reciprocal diagrams is as
follows: for a form diagram F(v,e,f) we have that for its reciprocal F′(v′,e′,f ′) :
v = f ′,e = e′,f = v′. Moreover, a necessary condition for the existence of two
reciprocal figures is that every e, e′ belongs only to two polygons from f , f ′.

Equivalently, the correspondence between geometrical elements for 3D plane-
faced reciprocal diagrams is as follows: between form edges e and force faces f ′.
Moreover, points v are mapped to reciprocal cells c′ indicating a 4D duality where
v = c′,e = f ′,f = e′, c = v′ and thus F(v,e,f,c) maps to F′(v′,e′,f ′, c′). Also,
each face of the polyhedral diagram belongs only to two polyhedral cells, every
line is the intersection of at least three faces and there are no free edges, faces, or
points. This type of reciprocal geometrical construction was firstly described by
Rankine (1864) and thus this type of spatial force reciprocals are called ’Rankine’.

2.3 Polarities and duality in the context of graphic statics
The principle of duality in 2D projective space means that any proposition that is
true for points and lines can be dualised to an equivalently true proposition for lines
and points (Cremona 1885). Thus this principle interchanges primitive geometrical
elements of the projective plane. This duality can be extended to higher dimensions.
For example, for 4D space, the interchangeable elements are the point, the line,
the plane and the hyperplane.

The duality between reciprocal geometrical elements also applies to their connectivity
matrices. For example, and for the 4D case, Cp,Cl,Cpl,Ch−pl are the connectivity
matrices between points, lines, planes and hyper-planes of a form diagram, and
Cp′ ,Cl′ ,Cpl′ ,Ch−pl′ the corresponding connectivity matrices of its reciprocal. These
matrices are symmetric and their entries are either 1, if two elements are adjacent
(for instance, two points in Cp are connected from an edge or two planes in Cpl

share an edge), or 0 if they are not.
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Polarities are transformations, of degree two, which map every element in a space
to another and are a useful tool for generating global force reciprocals of structures
in static equilibrium as well as for transforming structures from one typology to
another. Polarities in the context of contemporary graphic statics were introduced
in Konstantatou et al. (2018) for the design and analysis of 3D structures. It
should be noted that these constructions were mentioned in the context of rigidity
theory in the 90s (Crapo and Whiteley 1994). Here we will outline only some
useful equations which are necessary for this research. The reader is pointed to
Konstantatou et al. (2018) for a more detailed account on this subject. Polarities,
can be thought of as pairs of transformations L, L−1 that, in 3D space, map a
plane π, defined in equation form as Ax+By+Cz+D = 0 and described by
the corresponding quadruples (A,B,C,D), to a point P described from the triple
(x′,y′,z′) and vice versa. Using, for example, a paraboloid of revolution with
equation x2 +y2 − 2cz = 0 as the quadric of the polarity, for a point P (x′,y′,z′)
and its polar plane π described by the equation z =Ax+By+D, we have that

L−1(P ) = π (1)

L−1(x′,y′,z′) = (A,B,−1,D) (2)

then for this particular quadric, the plane π is given by

x(x′) +y(y′) +z(−c)− cz′ = 0

which rearranges to
z = x′

c
x+ y′

c
y−z′ (3)

which, when expressed in the (A,B,-1,D) form has

A= x′

c
, B = y′

c
, D = −z′ (4)

These equations can be readily inverted to give

x′ = cA, y′ = cB, z′ = −D (5)

which is thus the mapping L:
L(π) = P (6)

L(A,B,−1,D) = (x′,y′,z′) = (cA,cB,−D) (7)
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In the 4-dimensional space, a polar hyper-plane π defined in equation form as
Ax+By+Cz+Dw+E = 0 - and described by the corresponding quadruples
(A,B,C,D,E) - is mapped to a point P described from the quadruple (x′,y′,z′,w′)
(and vice versa) through transformations L, L−1. Specifically, given a point P
outside a hyper-quadric Γ (i.e. a 4-dimensional generalisation of a 3-dimensional
quadric), the hyper-cone with vertex in P and tangent to Γ, intersects Γ in a
quadric that lies on the hyper-plane π. Using, for example, a hyper-paraboloid
of revolution with equation 2cw = x2 + y2 + z2 as the quadric of the polarity,
for a point P (x′,y′,z′,w′) and its polar plane π described by the equation w =
Ax+By+Cz+D, we have that

L−1(P ) = π (8)

L−1(x′,y′,z′,w′) = (A,B,C,−1,E) (9)

For this particular hyper-quadric, the hyper-plane π is given by

x(x′) +y(y′) +z(z′) +w(−c)− cw′ = 0

which rearranges to
w = x′

c
x+ y′

c
y+ z′

c
z−w′ (10)

which, when expressed in the (A,B,C,−1,E) form has

A= x′

c
, B = y′

c
, C = z′

c
, E = −w′ (11)

These equations can be readily inverted to give

x′ = cA, y′ = cB, z′ = cC, w′ = −E (12)

which is thus the mapping L:
L(π) = P (13)

L(A,B,C,−1,E) = (x′,y′,z′,w′) = (cA,cB,cC,−E) (14)

Following the above construction, it is possible to directly obtain force recipro-
cals when the form diagrams are projections of 4D stress functions P(v,e,f,c),
P′(v′,e′,f ′, c′). These are spatial polyhedral geometries with plane faces, each one
of which belongs to exactly two cells.
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3 Methods
The methodology followed here is based on the introduction of reciprocal stress
functions which exist one dimension up from the corresponding reciprocal diagrams.
That is, in 3-dimensional space for 2-dimensional cases and 4-dimensional space for
3-dimensional cases. This approach provides the agility to start from any one of the
interlinked reciprocal objects (form, force, or their stress functions) while designing
within equilibrium space. The main concept is that reciprocal stress functions can
be mapped to each other and then subsequently projected one dimension down to
produce reciprocal form and force diagrams (fig. 1). Thus, this process comprises
a direct way to obtain global static equilibrium. The resulting method has no
need for iterative convergence whilst the geometry of stress functions holds all the
information of the structural behaviour of the corresponding truss: which members
are in tension, which are in compression and by how much while providing possible
design and analysis freedoms. This method is applicable to any 2D truss geometry
and to any polyhedral 3D geometry which has plane faces, each one of which belongs
to two cells. For these latter spatial cases, which are the focus of this research
paper, the method is equally applicable to tension-only, compression-only, and
tension-and-compression structures of any topology and, potentially intersecting,
geometry. Moreover, it is applicable both to self-stressed and externally loaded
structures.

The polarities graphic statics framework which was introduced previously has the
following characteristics: all four reciprocal objects are interlinked and all of them
can be altered while updating the rest, thus the designer has the option of choosing
the starting point: form, force, or reciprocal stress functions; each one of these
starting points has different capabilities but all result in statically equilibrated
structures. Specifically, by starting with the force diagram as an input the designer
can essentially design with the forces and observe interactively the form as an
output of the process. Alternatively, by working with the force stress function, or
by imposing the corresponding geometrical constraints on its projection (the force
diagram), a structural morphogenesis method can be obtained where the resulting
form diagram is guaranteed to be in static equilibrium. For the 3D case, the force
diagram should be a projection of a 4-polytope. This latter condition is essentially
what is already known in the literature as plane-faced (non-intersecting) Rankine
reciprocals which produce compression- or tension-only polyhedral spatial structures
(Akbarzadeh et al. 2015). This methodology includes subdivisions of the force
diagrams which result in different topologies of the spatial truss. By using the
polarities approach, this structural morphogenesis approach can be generalised for
compression-and-tension structures, where the geometry of the faces (in terms of
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Figure 1: a, b: Pair of reciprocal 4-polytopic stress functions P,P′ which can be derived by
mapping hyper-planes to reciprocal vertices through a 4D polarity. The resulting pair follows a
4D duality with respect to its constituent geometrical elements which is inherited to the pair of
reciprocal form and force diagrams in 3D F,F′ since the latter can be obtained from the former
through an orthographic projection from 4D to 3D. Adapted from Konstantatou et al. (2018).
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intersections, or complexity) is not limited. This is because something wrapped
and complicated in 3D can unravel and inflate in 4D. Moreover, by controlling the
curvature of the stress function the designer can control the areas of tension and
compression. Since form and force diagrams have an interchangeable character no
special treatment is needed for any of these.

Alternatively, the designer can choose to work directly in the form space. In this
case, by following the geometrical constraints imposed by the projective interlink
of the form diagram and its corresponding stress function one can be sure that
the designed form is structurally sound and not merely a free-form design with no
structural performance considerations. What is more, even if the designer starts to
draw a truss in a free-form manner then the resulting geometry can be corrected by
ensuring that it is a projection of a higher dimensional stress function. For example,
a polyhedral lifting can be performed on a 2D truss to check whether the latter is a
projection of a plane-faced polyhedron. In this process, the location of a number of
nodes can be corrected until the geometrical constraint is satisfied and the resulting
truss is in static equilibrium. Moreover, the fact that these geometrical objects are
interlinked through a direct transformation ensures global static equilibrium in every
step and there is no need for iterative node-by-node reconstructions and imposed
approximations between the form and force reciprocals. As a result, stress functions
can be used as a tool for structural morphogenesis of forms in static equilibrium.
Here we will design spatial trusses in the form of exoskeletons/ mega trusses of
high-rise towers.

The computational tools developed with respect to the above methodology were
implemented in the Grasshopper platform of the Rhino CAD software (fig. 2). In
particular, custom scripts were developed in the Python programming language
which would: a) lift the cells of the spatial form diagram to their corresponding
4-dimensional hyper-planes; b) map these following a direct mathematical operation
to their respective reciprocal force vertices in 4D; c) create all the other force
geometrical elements (edges, faces and cells), via 4D duality, by following the
connectivity of the initial form diagram; and d) Project the resulting reciprocal
pair of 4-polytopic stress functions orthogonally to the 3rd dimension to obtain
the reciprocal pair of spatial form and force diagrams. For the algebraic solver
developed with regards to a, the Math.NET Numerics library was used.
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Figure 2: The computational tool implemented in Python within the Grasshopper/ Rhino CAD
environment.

4 Results and Reflection
This methodology can be seen as a direct application of Maxwell’s Figure IV
(Maxwell 1864a) in the 4th dimension. Specifically, in (fig. 3) we see how two
planes intersect in 3-space to a line w and at the same time define a pyramid with
a flat top - the projection of which is a truss in static equilibrium. In fact, the line
w signifies the relative position of these two planes and is thus a design freedom
with regards to the design of the 2D truss. Equivalently, if this construction is
translated one dimension up in 4-space (fig. 3) then two hyperplanes will intersect
to a plane w (which now signifies a design freedom), these two hyperplanes can be
used to define a plane-faced 4D pyramid, the projection of which is thus guaranteed
to be in static equilibrium. The lines of action of the external forces are added to
the structural members resulting to an equivalent self-stressed truss which can be
then be analysed. As outlined above, the designer can start from the force diagram
(fig. 4) - the topology and geometry of which will define the resulting spatial truss.
Alternatively, the designer can choose to work straight in the form space. This
particular geometry is essentially two interconnected envelopes.

By following this methodology and working solely in the form space a wide range
of typologies for towers in static equilibrium can be generated as in (fig. 6). These
geometries are self-stressed spatial systems comprising interconnected polyhedral
truss envelopes. Each one of these systems will have a Rankine force reciprocal
(fig. 4) which visualises the state of self-stress of the tower. The number of
interconnected polyhedral envelopes can be decided by the designer based on the
architectural brief. The geometry of (fig. 4) was selected for developing a physical
model of this tower typology. In collaboration with Dr. Masoud Akbarzadeh, Dr.
Andrei Nejur and PhD students from the Polyhedral Structures Lab at UPenn,
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Figure 3: Left-Top: Maxwell’s Figure IV (Maxwell 1864a) is a projection of a polyhedron where
the position of line w signifies a design freedom; Left-Bottom: Polyhedral lifting of Maxwell’s
Figure IV; Right-Top: The 3D generalisation of Maxwell’s Figure IV is a projection of a 4-polytope
where the position of plane w signifies a design freedom; Right-Bottom: 4-polytopic lifting of the
form diagram, showing the geometrical principles resulting in self-stressed spatial trusses in static
equilibrium such as towers.

a computational and physical model was developed which comprised structural
members of varying diameters and custom-made joints which connected to the
edges. In particular, the structural members were timber rods whereas the joints
were 3D-printed with flexible plastic material. The glass facade panels were laser-cut
from perspex material and attached to the timber rods via 3D-printed rings. The
finished model (fig. 5) is 1m heigh and has been exhibited at UPenn.
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Figure 4: Self-stressed mega truss of a tower in static equilibrium as a form diagram and its
reciprocal Rankine 3D force diagram.

5 Conclusion
In this research paper we discussed how Maxwell’s graphic statics approach, com-
prising reciprocal polyhedral Airy stress functions and their interlinked form and
force diagrams, can be generalised in the 4th dimension and applied to the structural
morphogenesis of spatial trusses for towers in static equilibrium. This approach
can produce a plethora of compression-and-tension typologies which are by defini-
tion within equilibrium space whilst their Rankine force reciprocals can be directly
produced and visualised. We synthesised the direct mathematical description with
CAD capabilities to develop tools which enable the designers to analyse and design
this type of structures in a bi-directional way, namely, starting from either the
form or the force - or in fact from the higher dimensional stress functions - while
visualising the design freedoms in terms of geometrical objects.
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Figure 5: Various typologies and heights of trusses of towers in static equilibrium.
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Figure 6: CAD and CAM produced physical model of the 4-polytopic tower typology.
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