
E. Ross, D. Hambleton

Using Graph Neural Networks to Approximate Me-
chanical Response on 3D Lattice Structures

Elissa Ross*, 1, Daniel Hambleton1

1 MESH Consultants Inc.
401 Wellington St. W. 3rd Floor, Toronto ON M5V 1E7
* Corresponding author e-mail: elissa@meshconsultants.ca

Abstract
The promise of computer aided manufacturing (CAM) is to make materializable
structures that could not be fabricated using traditional methods. An example is
3D lattices, which may be arbitrarily complex. Variation in the lattice geometry
and print media can define a vast spectrum of resulting material behaviour, ranging
from fully flexible forms to completely stiff examples with high strength. Panetta
et al. (2015) outline a methodology to generate lattice geometries with specified
material properties. However, their method relies heavily on finite element analysis
of beam models to determine the material properties of a discretely sampled space
of lattices. In the present study, we use machine learning to perform a stiffness
analysis on highly symmetric lattice geometries with periodic boundary conditions.
We train a graph convolutional network on a dataset of lattices sampled continuously
from the space of all lattices, then use the trained model to predict deflections
for previously unseen lattices. With this approach we are able to approximate the
material behaviour of the vast space of all lattice geometries, which offers potential
for real-time material feedback at the design stage. It also offers a method to explore
a space of building components that are materially sparse yet offer high strength and
stiffness. The symmetry of the lattice geometry together with the stiffness analysis
creates a homogenized material model, which can be applied to different designs
to obtain similar material performance. We illustrate the approach with several
examples across different scales.

Keywords: Lattice structures, machine learning, graph neural networks, material
properties, performance-aware design.

466



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

1 Introduction
Computer-aided manufacturing (CAM) is fundamental to the design and fabrication
of bridges, high-rise towers, medical protheses, and much more. From automating
repetitive tasks at an incredible rate to unlocking the potential of unusual shapes in
structural optimization, the partnership of computer, designer and builder has been
fruitful. Yet some things have not changed. Variation and complexity of design
intent is still tempered by cost and the need to standardize parts and processes.
There is therefore great benefit to understanding how repetitive components can
be deployed with as much design freedom and variation as possible.

Figure 1: An example geometry composed of lattice elements.

Perhaps the most prototypical type of repetitive structures from a geometric
point of view is the lattice (fig. 1). Lattices are highly symmetric structures that
can be joined together without gaps, overlaps, or distortion. This complex, but
orderly, arrangement of nodes and beams is present in a huge range of natural and
human-made structures from bathroom tiles to the molecular structure of crystals.
From a design perspective, this orderliness is often their undoing. The underlying
mathematical rules of a lattice do not readily allow for the variation that will arise
during the transition from abstract form to physical object. When a lattice is
distorted the features that make it an attractive candidate for a structural system,

467



E. Ross, D. Hambleton

such as regularity of node geometry, will change and become difficult to predict.
Managing the impact of this change in a design setting can be challenging (Tam
et al. 2018).

Our project uses pre-computed performance metrics of lattices and their variations
to train a graph neural network (GNN) machine learning model. This model is
then used to predict the relative performance of lattice elements encountered in
aggregate structures that exhibit considerable geometric variation. The goal is to
help designers and engineers to make performance driven decisions by providing
real time feedback of high-quality simulation results.

1.1 Outline
In Section 2 we outline background information on lattice geometries and graph
neural networks. We also mention some other machine learning projects that
attempt to learn from geometric inputs. In Section 3 we describe the methods of
the present investigation, specifically the four synthetic lattice datasets we created
and their compression simulation. We present the graph neural network architecture
we employed and discuss a variety of data representations for geometric lattices as
inputs to the graph neural network. Section 4 reports on the results of the machine
learning models. In Section 5 we present the findings in an applied context by
discussing several design applications of the trained machine learning model.

2 Background
2.1 Lattice geometries
As material structures we can imagine lattices as structural systems composed
of repeating units of struts and nodes (Tam et al. 2018). In this work we focus
on cubic lattices, which are lattices that possess the full symmetries of the cube
and are therefore invariant under the 48 rotational and reflectional symmetries
comprising the symmetry group of the cube (Conway et al. 2008). Such a lattice
can be defined by a unit cell: a cube containing a lattice ‘recipe’ that can be
packed together to generate arbitrarily large 3D lattice structures. In fact, we can
describe an even more concise ‘recipe’ for such a lattice, by dividing the cube into
48 equal-sized tetrahedra, each invariant under any symmetry preserving the cube
(see fig. 2a).

Following the description in Panetta et al. (2015), we construct a lattice by defining
a lattice pattern in a single tetrahedron. The lattice pattern consists of lattice nodes
and edges connecting those nodes. The nodes may be places on the vertices, edges
or faces of the tetrahedron, or within its volume (fig. 2b), with 0,1,2 and 3 degrees

468



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

of freedom respectively. We therefore have 4 vertex nodes, 6 edge nodes, 4 face
nodes and 1 tetrahedron centre node, for a total of 15 possible node placements.
We describe the set of 15 possible nodes with the following notation:

{v0,v1,v2,v3,e0,e1,e2,e3,e4,e5,f0,f1,f2,f3, t0}.

In this way the description of a lattice involves both topological1 and geometric
characteristics. The topology of a lattice defines the graph of the lattice; specifically,
what nodes and edges are present (e.g. the node e3 is connected to the node f2 by
the edge (e3,f2)). The topology of a lattice pattern is completely defined by its
edge list, for example {(e0,f1),(e0,e3),(v2,f1)}.

(a) (b)
Figure 2: (a) A cube broken into 48 equal tetrahedra (Panetta et al. 2015); (b) the 15 possible
node positions on the lattice pattern tetrahedron, with indicated degrees of freedom.

The geometry of a lattice describes the position of the lattice pattern nodes, which
we denote pos(n) for node n. We use barycentric coordinates to define the position
of nodes on a lattice pattern relative to the four corners (vertices) of the lattice
pattern tetrahedron. We call these relative coordinates the offsets as in Panetta et al.
(2015). For example, the node e0 is on the tetrahedral edge connecting v0 and v1.
If e0 has offset ‘0.2’, its position is described by pos(e0) = 0.2pos(v0) + 0.8pos(v1)
(fig. 3).

1It may be mathematically more precise to describe these qualities as combinatorial; we use
the term ‘topological’ to maintain consistency with the architectural geometry literature.

469



E. Ross, D. Hambleton

Figure 3: The geometry of a single topological lattice type is controlled by offsetting the nodes
according to their degrees of freedom. In this example, the edge node is pictured sliding along its
single degree of freedom. The face node in this image has two degrees of freedom (not pictured),
and the nodes at the vertices are fixed.

When the lattice pattern is used to populate each of the 48 tetrahedra comprising
the unit cube, the result is a cubic lattice. See fig. 4 which illustrates this process
in a 2D analogue, using a triangle as the lattice pattern for the construction of a
square lattice. Note that this method does not guarantee that the resulting lattice
will be connected, but we can ensure connectivity through an attention to the nodes
on the boundaries of the lattice patterns, and the unit cell. In a graph, the valence
of a node is the number of incident edges. For lattices note that the valence of a
node in the lattice pattern is likely different from the valence of a node in a unit
cell, because of the effect of the rotational and reflectional symmetries of the cube.
This may again be different from the valence of a node in a periodic lattice because
of the effect of the translational periodic symmetry.

(a) (b)
Figure 4: Illustration of the lattice creation through a 2D analogue: (a) The lattice pattern is
a triangle populated with three nodes and two edges; (b) after applying the symmetries of the
square, we obtain a 2D lattice.

2.2 Graph neural networks
A neural network is a network of (typically simple) computational units combined
with simple nonlinear functions that together can approximate arbitrarily complex
nonlinear functions on a given dataset (see e.g. Goodfellow et al. 2016). Deep
learning is concerned with neural networks with multiple computational layers,
typically operating on large datasets. A convolutional neural network (CNN) is

470



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

a special neural network in which the processing units are convolutional filters
(kernels) which are applied to the data to detect local features. CNNs have been
used with great success in areas such as image recognition.

In recent years there has been an interest in building on the success of neural
networks to apply to a wider range of input data types. Geometric deep learning is
an attempt to generalize deep neural networks (convolutional networks in particular)
to non-Euclidean domains, such as graphs, point clouds or 3D meshes (Wu et al.
2020). This is challenging because graph-structured data is often heterogeneous
(graphs may have different numbers of nodes and edges), and the convolution
operator does not generalize to these non-Euclidean settings, but must instead
be redefined (Bronstein et al. 2017). These graph neural networks (GNNs) are
usually defined by either a spatial or spectral approach to convolution (Coa et al.
2020). Typical applications include predicting links in social networks, point cloud
reconstruction, or drug discovery. Most relevant to the present application are
studies in molecular chemistry that attempt to learn properties of molecules from a
description (and in some cases the position) of their atomic structure, as in Gilmer
et al. (2017).

Since the goal of our project is to predict the stiffness of a lattice, we work with
a graph regression model. Following Gilmer et al. (2017) we can conceptualize
graph neural networks as “message-passing” networks. Each node has features
(“messages”), which are then aggregated (“passed”) according to the nodes in
the 1-ring neighbourhood of a particular node (those immediately connected by
an edge). The k-th layer of a GNN will aggregate features from nodes that are
k-hops away. In the case of graph classification or regression, a pooling operation
will convert the aggregated messages on the nodes into a result (a labelling or
regression target) on the whole graph. In this way, the differences between different
GNNs for graph regression are primarily based on the choice of aggregation method
and the choice of pooling operation.

2.3 Related work
In Panetta et al. (2015), the authors introduce a set of tileable cubic lattices that
can be 3D-printed to achieve a range of compressive material properties. The
project systematically generates a large sample of 3D-printable potential lattice
types, then selects a small group of these lattices to optimally represent a range of
compressive behaviours. The six lattices in this small group may be tiled together
to obtain larger structures with desired emergent material behaviour. The focus of
their project is on small structures that are 3D printed, and the authors describe a
design tool to achieve variation in the material properties within a design.

471



E. Ross, D. Hambleton

Our work is highly influenced by Panetta et al. (2015), and both projects are
concerned with the homogenized material properties of isotropic (cubic) lattices.
While Panetta et al. focused on creating a ‘kit’ of lattices which would exhibit
a range of material behaviour, we are interested in analyzing the compressive
behaviour of arbitrary lattices. In addition, the authors of that paper sample the
space of all lattices discretely (e.g. node positions are constrained to lie on one
of predetermined 5 locations along the tetrahedron edge), while we sample the
offset space continuously. We also do not restrict our study to 3D printable lattices.
While we use a simulation similar to finite element analysis to generate our datasets,
our goal is to then use machine learning to make similar predictions on previously
unseen lattices. This is not part of the goal of Panetta et al. (2015).

Although interest in machine learning, and deep learning in particular has seen an
explosion of interest in the last two decades, the application of machine learning to
geometry has been slower to gain momentum. What are highly successful methods
in two dimensions become computationally burdensome in three dimensions. For
example, a naïve approach to this generalization would be to represent 3D space
by voxels in the same way that 2D space is represented by pixels, in which case
the machinery of convolutional neural networks then applies directly (Bronstein
et al. 2017). Although these methods have achieved some successes (Xu et al.
2017), the challenge of computation necessitates a low resolution that is likely
inappropriate for lattice structures. The closest related work therefore comes from
Graph Neural Networks, and models of molecules. However, even here most graph
models of molecules do not use conformation (position of atoms in a molecule) as
input because molecular geometry is not always known and may be challenging to
collect (in fact there are some promising attempts to predict conformation from
molecular properties (Mansimov et al. 2019)).

A project that more closely related to the goals of the present work is in Liang
et al. (2017). The authors use deep learning as a surrogate for finite-element
analysis to study the biomechanics of human tissues, in particular to predict the
stress distributions on patient aorta geometries. To our knowledge, this is the first
example of a neural network being used as a proxy for finite-element analysis, which
is also the ultimate goal of our project. In contrast to our work, however, the
geometry of the aorta is modeled by a uniform 3D mesh that is fit to a range of
patient geometries. In other words, the authors homogenize the input geometry,
and then encode the shape of the aorta using principal component analysis. A
neural network (not graph-based) is then applied to the encoded shape to obtain
the stress information. While the nature of the input geometry of this project is
very different from ours, the accuracy achieved by Liang et al. provides a promising

472



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

argument that it is possible to learn the nonlinear relationship between shape and
stress using deep learning.

More broadly, our work fits into a class of problems in architecture and engineering
that aims to use data-driven methods as a surrogate for more time and resource-
intensive structural simulation, particularly in the early design stages which often
lack structural information (Tseranidis et al. 2016). For example, neural network
models were applied in Danhaive and Mueller (2018) in an examination of the
deformation of shell structures under self-weight, leading to the availability of
(almost) real-time structural information. A potential application of that work (and
our own), would be to embed some structural feedback into the design phase of a
project.

3 Methods
3.1 Dataset creation
The space of potential lattices is infinite when sampled continuously. We therefore
constrained our focus to lattices that are connected, have nodes with valence
between 2 and 16 (after incorporating periodic symmetries), and have at most 3 or
4 nodes per lattice pattern tetrahedron. This restriction results in approximately
six thousand different lattice topologies.

From this collection of lattices, we created several different datasets:

1. The All Lattices dataset consists of four different randomly generated offset
positions for the lattice pattern nodes, for each of the 6K different topological
lattice types (top row, fig. 5), resulting in approximately 24K lattice instances.

2. The One Type A dataset consists of a single topological lattice type given by
the edges {(e0,f1),(e0,e3),(v2,f1)}, with 25K different offset positions for
the nodes. The topological type was selected for large number of degrees
of freedom of the nodes, which results in a wide range in the geometric
expression of the lattice (middle row, fig. 5).

3. The One Type B dataset consists of the single topological type defined by
the edges {(e0,f2),(e0,e3),(v2,f2)}, with 10K different offset positions for
the nodes.

4. The One Type A Morphed dataset consists of 25K morphed versions of the
‘One Type A’ dataset (bottom row, fig. 5). The morphs were defined by a
box morph of the cube enclosing the lattice unit cell. Each morph is randomly
determined.

473



E. Ross, D. Hambleton

Figure 5: Lattice datasets. Top Row: Samples from the ‘All Lattices’ dataset; Middle Row:
Samples from the ‘One Type A’ dataset (note the variation in geometry despite a single lattice
topology); Bottom Row: Samples from the ‘Morphed’ dataset.

3.2 Compression simulation
The goal of the compression simulation is to measure to what degree different
periodic lattice geometries resist a compressive force. This resistance is captured
by taking the difference between the top-most node in the compressed lattice and
the height of the bounding box of the uncompressed lattice. We call this number
the max compression. Given that our focus in this project is on architectural scale
objects, we define our units and boundary conditions as follows:

Units. We use the Standard Units (kg, m, s) convention. Each lattice unit cell is
defined on the interior of a 1m x 1m x 1m cube.

Cross Section. Each beam in the lattice is assigned a solid circular cross section
with radius of 0.05m.

Material. We use a Young’s modulus of 215 GPA and Shear modulus of 80. This
is roughly equivalent to a stainless steel material model.

474



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

Load. Each lattice unit cell is loaded on the positive Z plane (+Z), with a
distributed load of 500 MPa in the negative Z direction. We use the notation +Z

to describe the halfspace bounded by the plane with positive unit Z vector as its
normal. The planes +X,−X,+Y,−Y,+Z,−Z therefore describe the faces of the
bounding box of the unit cube.

Boundary Conditions. There are three boundary conditions:

1. Each node in the −Z plane is allowed translation in the XY directions.
Translation in Z and all rotations are clamped.

2. Nodes on the +X and −X planes are linked by a periodic transformation.
Similarly, nodes on the +Y and −Y planes are linked. This creates a periodic
boundary condition in the X and Y directions.

3. Finally, every node in the system is allowed translation but not rotation. This
creates a fixed joint, much like a welded steel connection.

Solver. To simulate this scenario we use Kangaroo, a plugin for Rhinoceros3D
and Grasshopper. We make use of the 6DOF elements which can provide accurate
results to the type of loads and elements in our experiment. Other solvers could be
used to obtain the features required to train the neural net. Recognizing that the
output of Kangaroo does not match a full finite element analysis, our goal with this
project was to create a “black box” scenario which can take as input the lattice
unit cells and produce as output some measure of performance. This black box
could later be populated with higher fidelity FEA, or another performance measure.

With our simulation defined and the solver in place, we processed a total of
100K lattices. Along with the maximum compression, we recorded the maximum
displacement vector and the fully deflected shape.

3.3 Machine learning model
We use the PyTorch-Geometric (Fey and Lenssen 2019) extension library for PyTorch
(Paszke et al. 2019) to train the neural network. We considered two main models
for graph-level regression, specifically the Graph Isomorphism Network (GIN) model
(Xu et al. 2019), and the “neural message-passing” model (NNConv) (Gilmer et al.
2017). We found the NNConv model to be more substantially more performant,
likely due to the fact that the GIN model does not incorporate edge features. In
the results described below, we use the neural message-passing model, with the
following architecture:

475



E. Ross, D. Hambleton

1. 5 iterations of {NNConv operator (dimension = 25), Gated Recurrent Unit}.

2. Graph level pooling operation by addition.

3. 2 fully connected layers, with Rectified Linear Units.

We experimented with different pooling operations to obtain a scalar result for the
whole graph, such as set2set, global addition (sum of the signal on the nodes) and
global mean pooling (mean of the signal on the nodes), with modest variations
in success. For consistency we use global addition in the results reported below.
The learning rate was initialized to 0.01 and scheduled to reduce upon training loss
plateau. We also experimented with depths (the number of iterations in step 1),
with the best results in the 3-5 layer range.

The NNConv operator uses both node and edge features, which we use to encode
the geometric information of the lattice, which we now describe. The general
pipeline is illustrated in fig. 6.

Figure 6: Schematic diagram illustrating the lattice GNN pipeline.

3.4 Data representation
The way that the lattice data is captured for input to the GNN involves a number
of choices about how to record both the topological and geometric characteristics
of the lattice, which may directly impact the model performance.

Topological aspects. Cubic lattices admit a highly concise description in the form
of the (tetrahedral) lattice pattern. However, to make use of the “message-passing”
capabilities of the GNN, we require a larger graph (the lattice patterns in our
datasets have only 2 or 3 edges). For this reason, we choose to use the lattice unit
cell as the basic unit of data.

476



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

We investigate two models to capture the topology of lattice unit cells. The first is
simply the graph of the unit cell, and we call this the unit cell representation. A
potential downside of this representation is that it does not capture the periodicity
of the lattice, although we can compute the adjusted valence of boundary nodes
by considering the effect of periodic symmetry on the lattice connectivity. The
second model identifies boundary vertices that are invariant with respect to the
periodic symmetry. We call this the merged boundary representation (see fig. 7 for
a 2D analogue). Identifying boundary vertices in this way allows us to naturally
capture the periodic structure of the lattice, and also reduces the size of the lattice
graph. In both representations, the topological data is passed to the GNN using an
adjacency matrix, the (0,1)-matrix capturing the edges of the graph.

(a) (b) (c)

Figure 7: (a) An example 2D lattice, with boundary vertices coloured according to their identifica-
tion under the periodic symmetry; (b) The merged boundary representation, with boundary vertices
identified; (c) Another embedding of the same graph, emphasizing that this is a topological, not
geometric, representation of the lattice structure.

Geometric aspects. A challenge of machine learning models on geometric data is
that the data must be invariant to transformations such as rotation, translation
and dilation. Just as we would hope an image recognition model would identify
a cat no matter where the cat appears within the frame of the image, we require
the data representation of geometric objects like lattices to be independent of their
embedding. For this reason, we focus on the geometric features of a lattice as a
proxy of its position in space. We use node features and edge features as follows:

1. The complete set of node features we considered are: valence of the periodic
lattice nodes (v ∈ [2,16]); node type (nt∈ [0,14]), e.g. v0,e3,f2 etc.; average
edge length of incident edges (`a); total length of incident edges (`t); average
over the incident edges of the absolute value of the dot product of the edge
direction vector with (0,0,1) (denoted z); and offsets (o0,o1,o2). We focus
on the z-direction as this is the direction in which the force is applied. For
simplicity in this report we describe two distinct feature sets:

477



E. Ross, D. Hambleton

(a) Offsets: Valence,node type, and offset information: (v,nt,o0,o1,o2), or

(b) Geometric Features: Metrics calculated from the lattice information on
a per-node basis: (v,`a, `t,z)

2. Edge features consisting of: edge length (`e) and the dot product of the edge
direction vector with each of the three unit direction vectors: (`e,x,y,z).

4 Results
We use mean absolute error (MAE) as our primary metric of success. For each
model we also include the MAE for the dummy regressor which always predicts the
mean and is independent of the choice of data representation. The MAE of the
GNN model is reported after 200 training epochs. We did not observe significant
further reduction in training error after this number of epochs. In addition, since the
training relies on some nondeterministic processes, the reported MAE is the mean
of three or more training cycles. The results are presented in tab. 1 to 4. Here we
use “GNN” to describe the model outlined in the previous section, specifically the
GNN model from Gilmer et al. (2017), as implemented in PyTorch-Geometric (Fey
and Lenssen 2019).

For the single lattice datasets A and B, we compare the results of the GNN model
to the results of “classical” machine learning algorithms, specifically a multi-layer
perceptron (MLP) regression in scikit-learn (Pedregosa et al. 2011). We are able
to do this due to the homogenous nature of the lattice data in this case. That is,
since we are constraining our interest to a single lattice type, the data lacks the
topological variability of the “All Lattices” dataset. We also consider reductions
to the size of the training datasets, and look at different combinations of data
representations. Further comments on the relative merits of these approaches are
provided in the next section.

We note that the error of the Type B Lattice dataset is lower than that of the Type
A dataset, however it must be compared against the dummy regressor which is also
lower (and reflects less variance in the sample data compression targets). Both
cases exhibit at least a six-fold increase in accuracy over the dummy regressor.

In the case of the morphed dataset it is no longer possible to use the merged
boundary representation of the lattices because the morphed representations may
not be periodically symmetric. We therefore use the unit cell model. It is also
not possible to use the offsets as node features. While the offsets determine the
starting positions of the lattice nodes, the morphs modify their final positions.

478



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

Data Representation ML Model MAE

any Dummy regressor 0.11526
Merged boundary & geometric features GNN 0.08084

Merged boundary & offsets GNN 0.06955

Table 1: All Lattices dataset.

Data Representation ML Model MAE

any Dummy regressor 0.07509
geometric features only Classical MLP 0.03034

Merged boundary & geometric features GNN 0.01472
Reduction to 10K lattices GNN 0.01488
Reduction to 2K lattices GNN 0.01954

Merged boundary & offsets (25K lattices) GNN 0.00922
Unit Cell & geometric features GNN 0.01327

Table 2: One Type Lattice A dataset (25K lattices).

Data Representation ML Model MAE

any Dummy regressor 0.03314
geometric features only Classical MLP 0.01699

Merged boundary & geometric features GNN 0.00526
Merged boundary & offsets Classical MLP 0.01474
Merged boundary & offsets GNN 0.00441

Table 3: One Type Lattice B dataset (10K lattices).

Data Representation ML Model MAE

any Dummy regressor 0.08184
Unit Cell & geometric features Classical MLP 0.02435
Unit Cell & geometric features GNN 0.01521

Table 4: One Type Lattice A Morphed dataset (25K lattices).

Dataset Data Representation MAPE Accuracy

One Type A Merged boundary & offsets 7.58% 92.42%
One Type B Merged boundary & offsets 7.18% 92.82%

One Type A Morphed Unit Cell & geometric features 13.71% 86.29%

Table 5: MAPE and accuracy for best performing models.

479



E. Ross, D. Hambleton

Table 5 presents the mean absolute percentage error (MAPE) and accuracy (as
100% – MAPE) for the best performing models above. These metrics are the mean
of three or more training iterations.

5 Discussion and design applications
As the results of the previous section indicate, the GNN model in its various
realizations was able to learn a measure of the compressibility of a lattice from the
lattice geometry. Although the accuracy of the learning was limited for the ‘All
Lattices’ dataset, it is clear from the single lattice studies that much higher levels
of accuracy are possible in more restricted settings.

A perhaps surprising finding is that the accuracy for the single lattice models is
only slightly reduced when the size of the training data set is drastically reduced
(from 25K to 10K or even 2K). This offers a potential pathway to training a
heterogeneous data set like the ‘All Lattices’ set, simply by more densely sampling
the offset space for each topological lattice. While the ‘All Lattices’ set had only
four random samples per lattice topology, we could imagine an enlarged dataset
with 2K random samples per topology. Even this enlarged dataset would not be
particularly large by the standards of contemporary deep learning (Goodfellow et al.
2016), and is a planned topic for further investigation.

While it is not always possible to use the offset information as node features (e.g.
in the morphed lattice dataset), it is notable that when we are able to use offset
information, the model performs better. This is significant because it opens the
door to the inverse model: setting a compressibility target then driving the network
backward to generate lattice suggestions. In the case of geometric features, these
do not give a recipe for how to generate a lattice, they are merely properties of
a lattice. However, a model that outputs offsets would be capable of specifying
lattice positions.

5.1 Significance
To our knowledge, this is the first instance of material properties being predicted
from lattice geometry using machine learning. The potential of this finding is
that we may be able to offer real-time structural feedback to designers without
the cost or time of finite element analysis. While a simple compression study in
Kangaroo may take upwards of six hours for 25 thousand lattices, for a trained
machine learning model the results are available in seconds. In the specific case of
the results presented here, we acknowledge the limitations of the simulation model
(Kangaroo), which are not intended to replace the output of finite element analysis.

480



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

Yet, as a relative measure of compressibility we think this is a positive step in the
direction of performance-aware design using machine learning. We now outline an
example use case.

5.2 Design application: morphed geometries
This example consists of a volume populated with a single lattice geometry that
is morphed to fit within (or equivalently a finite section of lattice is morphed to
fit a surface, see fig. 8 for a spherical example, and see fig. 9 for an example on
a hyperbolic paraboloid). As the design volume is pushed/pulled, the trained ML
model offers predictions of relative compressibility on a per-cell basis. This is encoded
visually by a colour scheme indicating where lattice units are more or less stiff than
the undeformed case. In this way, a designer is able to understand the relative
structural implications of various transformations of the lattice geometries. While
the ML model does not make predictions about the aggregate lattice geometry, it
is helpful to understand areas of relative strength and weakness within that volume.

Figure 8: Left: Lattice A fit to the surface of a sphere (19,200 beams). Right: The colours
represent the ratio of the predicted compression to the baseline undeformed simulation compression
(predicted / actual). Yellow is 1.0 (the same compression), green is 0.5X compression and red is
1.5X compression. For this lattice the baseline (undeformed) compression is 0.025, the average in
the morphed geometry is 0.038, with 0.013 for the least compressed cell, and 0.090 for the most
compressed cell.

6 Conclusion & further work
In this paper, we present a novel end-to-end pipeline that predicts material properties
of lattice structures using machine learning. Our tests show that the neural network
defined in sec. 4 can predict the compression on unseen lattices to an accuracy of
93%. Moreover, we can use the trained model to rapidly assess the relative per-

481



E. Ross, D. Hambleton

formance of a lattice unit cell that has been deployed on a design volume. While it
is clear that using a trained model as a surrogate for detailed finite element analysis
is faster than running that analysis for each design iteration, it is worth noting
that the trained model also outperforms a lookup table or interpolation approach.
In either case, the number of samples needed would be on the order of 10K per
offset lattice instance (a single topological lattice in a single offset position). Apart
from the large amount of data required, there is also the difficulty of defining an
appropriate distance metric on the space of lattices or lattice features. These high
dimensional spaces are notoriously challenging for nearest neighbour queries.

Figure 9: Lattice fit to the surface of a hyperbolic Paraboloid. See also fig. 1. Colour coding is
as in fig. 8. The baseline compression is 0.025, the average in this geometry is 0.041, with the
least compressed cell 0.010 and the most compressed cell 0.067.

A key part of our project is that it can incorporate data from any analysis defined on
the lattice data sets. The same pipeline would work with a fine-grained volumetric
analysis or different structural cross-sections run with more standard industry solvers.
This means that rapid design iteration can be done without reducing the fidelity of
the analysis on the training set. We believe that this approach has great potential
for performance-aware design tools.

As mentioned in sec. 5, the next step in this work is to explore the inverse regression
problem. The model would take as input a compression target and a target domain
(i.e. a hexahedral element) and produce a lattice (or selection of lattices) as output.
The result would be fast iteration of visually diverse, performance-driven lattice
structures. We also intend to run the simulation with different FEA solvers and
test the model using different features. A longer term goal is to identify some
of the top performing lattices across a variety of metrics in the space of cubic
lattices. Understanding this set and building a suite of finely tuned machine learning
models to deploy them on industrial projects would be a powerful application of
this research program.

482



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

Acknowledgements
The authors thank Nicholas Hoban, David Reeves and Tomasz Reslinski for fruitful
discussions on this topic. We also thank the anonymous reviewers for drawing our
attention to some additional references.

References
Bronstein, M., J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst (2017).

Geometric deep learning: Going beyond euclidean data. IEEE Signal Processing
Magazine 34(4).

Coa, W., Z. Yan, Z. He, and Z. He (2020). A comprehensive survey on geometric
deep learning. IEEE Access 8, 35929–35949.

Conway, J. H., H. Burgiel, and C. Goodman-Strauss (2008). The Symmetries of
Things. Boca Raton: CRC Press.

Danhaive, R. and C. Mueller (2018). Structural metamodelling of shells. Proceedings
of IASS Annual Symposia 2018(25), 1–4.

Fey, M. and J. E. Lenssen (2019). Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

Gilmer, J., S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl (2017). Neural
message passing for Quantum chemistry. In ICML’17: Proceedings of the 34th
International Conference on Machine Learning, Volume 70, pp. 1263–1272.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. Cambridge:
Massachusetts Institute of Technology.

Liang, L., M. Liu, C. Martin, and W. Sun (2017). A deep learning approach
to estimate stress distribution: a fast and accurate surrogate of finite-element
analysis. J. R. Soc. Interface 15.

Mansimov, E., O. Mahmood, S. Kang, and K. Cho (2019). Molecular geometry
prediction using a deep generative graph neural network. Scientific Reports 9.

Panetta, J., Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and D. Zorin (2015).
Elastic textures for additive fabrication. ACM Transactions on Graphics 34(4).

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, et al.
(2019). Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, 8024–8035.

483



E. Ross, D. Hambleton

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, et al. (2011). Scikit-learn: Machine learning in python. Journal of
Machine Learning Research 12, 2825–2830.

Tam, K.-M. M., D. J. Marshall, M. Gu, J. Kim, Y. Huang, J. Lavallee, and C. T.
Mueller (2018). Fabrication-aware structural optimisation of lattice additive-
manufactured with robot-arm. International Journal of Rapid Manufacturing 7.

Tseranidis, S., N. Brown, and C. T. Mueller (2016). Data-driven approximation
algorithms for rapid performance evaluation and optimization of civil structures.
Automation in Construction 72, 279–293.

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang, and P. Yu (2020). A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and
learning systems.

Xu, K., W. Hu, J. Leskovec, and S. Jegelka (2019). How Powerful are Graph Neural
Networks? In ICLR.

Xu, K., V. Kim, Q. Huang, and E. Kalogerakis (2017). Data-driven shape analysis
and processing. Computer Graphics Forum 36(1).

484



Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures

485


	Using Graph Neural Networks to Approximate Mechanical Response on 3D Lattice Structures
	Introduction
	Outline

	Background
	Lattice geometries
	Graph neural networks
	Related work

	Methods
	Dataset creation
	Compression simulation
	Machine learning model
	Data representation

	Results
	Discussion and design applications
	Significance
	Design application: morphed geometries

	Conclusion & further work


