S-G. Shih

Grammars of Interlocking SL Blocks

Shen-Guan Shih™

1 Department of Architecture, National Taiwan University of Science and Technology,
106 Taipei, Taiwan

Corresponding author e-mail: sgshih@mail.ntust.edu.tw

Abstract

Grammar is a kind of abstract representations for defining how the composite whole
can be derived from a hierarchy of mutually related parts. This paper discusses how
grammars can be used as a means to assist the design and construction of large and
complex compositions out of a simple building block.

An SL block is an octocube designed for making semi-interlocking structures ex-
tensible in three orthogonal directions. String re-write grammars are used to define
languages of SL block compositions. It is expected to establish a mathematical
basis for SL block compositions. Investigations and speculations through concepts,
principles and notations of such a grammatical approach are proposed. A building
frame form generator is devised to provide views towards how SL blocks can be sys-
tematically arranged to create architectural forms. With the grammatical approach,
it might be possible to implement compilers for high level composition languages of
SL block compositions.

Keywords: polycube, building block, grammar, interlocking.

506

Grammars of Interlocking SL Blocks

1 Introduction and background

Combining great numbers of units to form large and complicated structures is a
general principle in the development of natural and man-made objects. Grammar
is a formalism to define syntactic structures of languages. This study proposes a
strategy of using grammars to enable the compilation of high level representations
to low level building block compositions.

Engineers, architects, product designers and puzzle designers look for interlocking
configurations that can connect separated parts into strong and stable structures
(Yong 2011; Weizmann et al. 2017; Fu et al. 2015; Song et al. 2012). Topological
interlocking (Dyskin et al. 2003) opens up opportunities to the discovery of new
and enchanted materials and structures by cellular units (Kanel-Belov et al. 2010;
Estrin et al. 2011). This study proposes a system that may construct large varieties
of forms with various structure behaviours by interlocking blocks of identical shapes.
For architecture, it may contribute to the design of reusable building blocks that
can be efficiently manufactured by means of mass production.

1.1 Semi-interlocking

Interlocking is an interesting issue for prefabricated constructions. Advances of
digital fabrication technology drive researches towards automatic generation of
interlocking parts for assembly (Song et al. 2012). Interlocking property of assembled
structures can be classified by calculating the degrees of translational freedom
for parts that are not to be dissected, and the network of relations for parts
engagements (Fu et al. 2015). Among these researches, polycubes were often used
as the basic elements for simplification and generality (Lo et al. 2009; Song et al.
2012). In this study, semi-interlocking is defined as the property of structures
made up with units that are either locked topologically, or less preferably, with
individual or groups of units held to the structure by friction and left with one single
direction of translational freedom. A semi-interlocking structure may retain stability
under forces from various directions, and allows at least one feasible sequence for
assembling and disassembling.

1.2 The SL block, Conjugate pair, concatenation and SL strand

An SL block (Shih 2016, 2018) is a kind of octocube that can be used to build
large variations of semi-interlocking structures without using any connectors or
adhesives. Figure 1a shows the figure of an SL block, with three arrows shows
the referred X, Y, Z axial directions and the rotational center at the intersection
of arrows. Two SL blocks arranged into 180° Y axis rotational symmetry are
called a conjugate pair, as shown in fig. 1b. Conjugate pairs of SL blocks can be

507

S-G. Shih

sequentially concatenated to build a linked structure called an SL strand. Six types
of concatenations are denoted as h, t, s, d, a and y. In fig. 2, the concatenating
pair is shown as blue and the host pair that is to be concatenated is shown as
transparent. Each type of concatenations would forward the free end of the strand
into a specific direction and position. The SL strands may form closed loops if
both ends meet at the same location like a snake that bites its own tail. All closed
SL strands are semi-interlocking without using any adhesives between SL blocks.

(b)

Figure 1: (a) an SL block, (b) a conjugate pair.

In fig. 2, axial rotations and translations of the corresponding transformations of
each types of concatenations are denoted as Ry (ange):, Fy(angie)r 1:(angle) and
T(zyz)- The six types of concatenations can be divided into two groups of three by
whether the corresponding transformation consists of 180° rotation along x axis or
not. Concatenations in both groups can be further characterized by 0°, -90° and 90°
of rotations on z axis within the transformation. Translations for concatenations
are strictly dependent upon rotations.

R0 R:(00) Rzog)
h t s \
Ry p180) k
Ry150Ti2.00) Ru1s0Rzr00/Ti1,1,1) Ry180)R 00 T(1-1,-1)
d a y
R
Too 1) Ras0Ti1,1,0) Rao0)T11,1,2)

Figure 2: Six types of concatenations with their corresponding transformations.

508

Grammars of Interlocking SL Blocks

2 Methods
2.1 String representation of SL strands

The SL strands can be represented as strings consisting of six letters that stand for
the six types of concatenations. Concatenations are regarded as non-commutative
multiplications. Figure 3a shows an open strand hhhh, or h*, with the exponent
stands for repetitive patterns. An open strand consists of one more pair of SL
blocks than the number of concatenations. Figure 3b shows a closed SL strand
of a*. Consisting with just 4 conjugate pairs, it is the smallest closed SL strand.
Figure 3c shows the strand of (hha)?, which is formed by repeating concatenations
(hha) 4 times. Figure 3d shows the strand of hhahdhshthy. In the figure, colors
are used to distinguish types of concatenations between a pair and its preceding
pair. The white blocks on the left are the initial pair.

hhahdhshthy

Figure 3: (a)an open strand, (b) and (c) two closed strands, (d) an open strand with colors
showing the types of concatenations between a pair of SL blocks and their preceding pair.

2.2 SL strand grammars

A grammar consists of an initial variable and a set of rewrite rules, which are used
to transform the initial variable into strings consisting of only terminals h, a, d, s,
t and y, denoting the types of concatenations. For the definition of grammars, the
symbol 1 is used to represent the multiplicative unity, or an empty concatenation.
Denoted as bold capital letters, a variable represents an uncertain SL strand that
has not been derived through rewrite rules derivations. A grammar defines the
domain of its initial variable. The derivation of a variable based on rewrite rules in
the grammar would uncover uncertainty and downsize the domain of the variable.

509

S-G. Shih

When the derivative process is fully uncovered, the initial variable can be evaluated
to a specific SL strand. In this paper we use polynomials notation for grammars.
Concatenation is regarded as noncommutative multiplication. Addition is regarded
as “or” and adds derivative options to the variable on the left hand side of the
rule. Rewrite rule options are added to make a summation to define the domain of
a variable. Equal sign is used to associate a variable with its rewrite options on
the right hand side. The multiplication is associative but not commutative. The
addition is associative and commutative. The multiplication is distributive over
addition. For example the following rewrite rule defines the domain of the variable
X as {aa,aha,ahha}, and X can be assigned with any member of the set when it
is evaluated.
X =a(1 +h+h*a=aa+aha+ahha

Rewrite rules can be recursive. The following rule defines a domain for the variable
X as (h+h*+h3+...+h").

X =h(1+X)

The grammar (31 is a universal grammar that defines all possible SL strands without
checking self-collision. In G, items separated by addition in the expression on
the right hand side of the rule are options that can be selected for rewriting. The
process may go on recursively until X is rewritten with the multiplicative unit 1
and the recursion terminates. Figure 4 shows 8 strands from G, generated by
random selections of rewrite options.

Gi:X=(h+tatd+s+tty)(X+1)

The grammar G4 defines closed strands with the shape of cube or elongated cubes

of variable lengths. The language consists of palindromes with aa separating zero or
even numbers of consecutive h's on both sides and end both ends with an a. The
simplest form in the language is a cube, denoted as the string aaaa or a*. Three
strands generated by GG are shown in fig. 5. Conjugate pairs that are appended
with a and h concatenations are shown in yellow and red respectively.

Goy: S
1.5 =aXa
2.X =hhXhh+aa

510

Grammars of Interlocking SL Blocks

hhaddhht dhhyhhda hdshdhht
% h
sydhhhda hhhdasht sdystdda hsdhhdht

Figure 4: 8 strands from G1, with colors showing the type of concatenations between a pair of SL
blocks and their preceding pair. White blocks are the initial pair. h: red, a: yellow, d: orange,
s:green, t:cyan, y: blue.

LERILR O

a’ (ah?a)? (ah*a)

Figure 5: Three strands of G5 with various lengths, with colors showing the type of concatenations
between a pair and its preceding pair.

2.3 Fixed ending grammar

Every concatenation of SL block has a corresponding matrix that defines the
transformational relationship between the concatenated and the concatenating SL
pairs. The transformational relationship between the first and the last SL pairs
of a strand can be derived by multiplying all concatenating matrices. Grammars
that always generate strands with both ends at a consistent transformation are
called fixed ending grammars. The transformation from the starting SL pair to the
ending pair is called the end transformation of the strand. The grammar G5 always
generates closed strands. The grammar G5 is a fix-ending grammar with identity
matrix as its end transformation. Fixed ending grammars are of particular interest
in this study. Designers may cut off a segment of a strand and insert the initial
variable of a fixed ending grammar with an end transformation that matches the
cut.

The grammar G is a fixed ending grammar with end transformation equivalent to
concatenations hh. Figure 6 shows 3 strands generated by G3, with starting pair

511

S-G. Shih

in cyan and ending pair in blue. On the left hand side of the figure there shows the
matrix for the end transformation of all strands generated by Gs.

G3: X
1.X =aYa
2.Y =hhY hh+ haah

end ‘ i ‘ X

4
0 N
0 | '
1 N [A ¥ |
|
. \ N \
end transformation ahaaha start N ah’aah’a

Figure 6: Fixed ending strands generated by G3.

o|lo|lr]|o
oflr|o|o

ool ol

2.4 Inserting grammars to strand

Figure 7 shows the process of inserting the strand ahaaha (Figure 7a) into the
strand (ah®a)? (fig. 7b) with the 5" and 6" pairs removed. The result of the
insertion is ah®ahaahahba, as shown in fig. 7c. The removed pairs are shown as
red transparent blocks in fig. 7b.

(b) ahhhhhhaah®a

(c) ahhh haah®a

Figure 7: (a) the inserting strand, (b) the inserted strand, (c) the resulting strand.

The inserting strand can be replaced by a fixed ending grammar with the same
ending transformation. The purpose is to incorporate uncertainty into SL strands
construction when design decisions are incomplete. For grammar G4, when the
variable X is recursively substituted with the right hand side options of the rule,
the domain of X is expanded endlessly as the following summation:

X = gh?t1g2p2ntly 1 qp2(=D+12p200=D+1 4 1 h362R3a 4+ aha®ha

512

Grammars of Interlocking SL Blocks

Since the addition is interpreted as “or"”, the value of X remains uncertain and
variable within the domain defined by the infinite summation. Inserting the variable
X into the strand (ah%a)? with the contacting segment removed, the resulting
strand becomes ah?a X aha®?h®a. When the uncertainty is uncovered and the value
of X observed, the strand can be evaluated into one of the items in the following
summation:

ah3ah® a2 ahahSa + ah3ah2(=D g2p2(0 =041 pa2pSg 4 ...

+ah3ah?a’h3aha’hba+ ah?aha’haha®hba

Figure 8 shows some possible outcomes of the strand after X is uncovered.

Figure 8: Some possible strands created by insertions.

2.5 Inserting a grammar to another grammar

The grammar Gy is a fixed ending grammar with end transformation of haah.
Some strands created by (G4 are shown on top of fig. 9a. The grammar G5 always
generates closed strands that are folded into elongated rectangles of various lengths.
The definition of the variable S in G5 consists of two rewrite options, of which haah
is the only option that would terminate the recursive rewriting for the derivation
of S. It is apparent that the variable S must be uncovered to a strand that has
a sub-strand as haah. Since haah is the fix-ending transformation of Gy, it is
possible to append the rewrite options of the variable S in G5 with the rewrite
options of the initial variable X of G4. The grammar Gjg is defined by such a
grammar insertion plus an additional rewrite option h.Sh for the variable Y, which
enables mutual recursive derivations between the variables Y and S. Figure 9b
shows 5 strands generated by Gs.

513

S-G. Shih

Gy: X Gs: P

1.X =ahY hhah + hahhY ha 1.P =ahSha+ aaaa
2.Y =hhYhh+aa 2.8 =hhShh+ haah
Gg: P

1.P =ahSha+ aaaa
2.5 =hhShh + haah + ahY hhah + hahhY ha
3.Y =hhYhh+aa-+hSh

Variable S’ can be expanded to the following summation:

S = p2ntlggp2ntt 20D Cn=1) 4 p3aah3 + haah

(b)
Figure 9: An example of grammar insertion: (a) strands created by inserting strands of G4 to a
strand of G5; (b) Strands created by G§.

G7:T

1.7 =ala

2.L =hSh+aa

3.5 =hLh+aShah+ hahSa+aSaShh+aShhSa+ hhSaSa+aSaSaSa

514

Grammars of Interlocking SL Blocks

In the grammar G, the variable S appears in rule 2 and rule 3. The second rewrite
option aa for the variable L is the only one rewrite option in both rules that does
not include any variables. The only way for .S to be rewritten with a strand consists
of the variable L is the first rewrite option hLh. It can be inferred that the variable
L would be preceded and succeeded with the concatenation h when it is finally
rewritten to aa. Therefore the sub-strand haah would always appear at the time
when the recursive derivation of the variable S terminates. Based on the definition
of G7, assuming a variable S’ which inherit only the first rewrite option from rule
3 and the variable L, we may derive the following rules for S’

L' =hS'h+aa
S'=hL'h

SL strands cannot have branches sprout away from the main path, but can be folded
to make branch-like forms, called pseudo-branching. The grammar G7 generates
pseudo-branching structures.

A AT

(a) haah ahaahhah hahhaaha ahaahahaahhh ahaahhhhaaha hhhaahahaaha ahaahahaahahaaha

e N

&y Ao
Figure 10: a. Shortest strands for rewrite options of S in G7, b. Three strands derived with G7.

&
’

<

(b)

The variable S” can be proven to be fixed ended with transformation haah. Let's
add one more rewrite option aS’hah to S’. With S’ rewritten with its own end
transformation haah, the strand aS’hah becomes ahaahhah, which also has
haah as the end transformation. Therefore, the end transformation of S’ remains
unchanged after the new rewrite option is added. We may add all other rewrite
options in .S and find that the end-transformation would be consistently haah for
all possible derivations. Figure 10a shows the shortest possible derivations of all
rewrite options for the rule 3 in G7. Figure 10b shows some derived strand from G7.

515

S-G. Shih

The grammar GG; generates a language of all closed strands with pseudo-branches
consist of only h and a concatenations.

2.6 Syntax-directed translation

The expressive power of context-free grammar is restricted by the syntactic structure
of the parse tree. Information that is needed in deriving symmetric patterns cannot
be sent across derivative branches in the parse tree. Syntax-directed translation is
a means to derive information from a parse tree and use it in syntactic operations
for analysis or generation. For example, it is impossible to define a context-free
grammar that generates sets of strands with three or more correlated derivations
such as h"ah™ah™ , or with two or more correlated derivations that are not nested
such as ah™ah™ah"ah™. Figure 11 shows two translations that map two input
strands (ah?a)? and (ah*a)? derived by G5 to output strands defined by Gg and
G110 through input grammar Gg. In the process of translation, Gg is used to parse
input strands. QOutput strands are generated by replacing rewrite options of the
input grammar in the parse tree with corresponding rewrite options in the output

grammars.
Input Grammar Output Grammar 1 Output Grammar 2
Gg:X Gg: X Gi9: X
X =aY1aYs X =aYi1aYs X =aYi1aYs
Y1 =hhYi +a Y, =hhY1hh+a Y] =ssYiss+a
Yo =hhYs+a Yo =hhYshh+a Y5 =ssYsss+a

(ah’a)’
Derived with G, 10
Parsed with Gg

Derived with G,

24
(as’) Parsed with Gg 44
(as’)

Figure 11: Examples of syntax-directed translations.

516

Grammars of Interlocking SL Blocks

3 Results

A grammar that creates frame structures is defined in this section. A set of variables
are defined as the following list for specific parts of the frame structure. The set
of variables are combined to define G1; that is used to derive frame structures
shown in fig. 12. Figure 12a-c show structures with columns, cantilevers, beams,
and pitched girders. Figure 12d shows a photo of a model assembled with
8mm*16mm*12mm SL blocks. The model consists of two SL strands that are
identical in shapes and with one in yellow and one in blue for colors. Both strands
are derived by G171 with the option of having a base F' at the bottom of the column.

Gi1:X
1.X =(1+F)Y
2.Y =Ct(dBd+dHd+ S+ dhSd+ P)sY +C

(d)

Figure 12: (a) Cantilever structures (b) Combining two strands to make frame structure (c)
structures with sloped and pitched girders (d) a photo of an assembled model based on an extended
version of GG11.

517

S-G. Shih

1. a helical strand for column with various height
C=tsC+ts

2. a cantilever beam with various length
B =hhBhh+aa

3. a half beam with various length
H=hHh+h

4. a sloped lintel
S=dS+d

5. a pitched girder
P=dPd+h

6. a column foundation
F = ahhahhahhaadstdaF /ahhahhahhaads

Figure 13 shows three grammars generating tree-like strands based on the same
structure with a helical strand as the trunk and folding strands extruding from
four directions as branches. All three grammars are devised by variable insertion
described in prior sections. Figure 14 shows an application of syntax-directed
translation for a strand generated by the grammar G12. In the translation process,
the grammar (15 is used to parse the input strand shown in fig. 14a. The resulting
parse tree is used to guide the derivations of GG14 to generate the output strand
shown in fig. 14b.

Input Output

G5 :X G : X

X =thX +tahYiaaYohdhX +th X =thX +tatY1aYstadh X +th
Y, =hhY;+1 Y71 =ssYiss+a

Yo =hhYs + 1 Yo =ssYoss+a

4 Conclusion

It is attempted to establish a theoretical basis for SL block compositions. The
polynomial notation for grammars is found to be convenient and revealing. The
properties of end transformation and being fixed ending of grammars are very
helpful for devising grammars that are meaningful and interesting for SL block
compositions. Future works are needed for clearer definitions, theorems proving,
and semantic checking based on syntactic operations.

518

Grammars of Interlocking SL Blocks

Gia: X
X = thX +tahBhdhX +th
B= hhBhh+aa

Giz: X
= thX +tahLhdhX +th
L= hSh+aa
= hLh+aShah+ hahSa

Guy: X
X = thX +tahLhdhX +th
= hSh+aa
= hLh-+aShah+ hahSa
+aSaShh+aShhSa
+hhSaSa+aSaSaSa

Figure 13: Three grammars generating tree-like strands.

=
2 | 1

P i

ddﬁ'l” : “‘I]

Derived with G35 - r
| g Wletadatad 1!

Parsed with G5
(a)

Figure 14: An application for syntax-directed translation. (a) the input strand of the translation,
(b) the output strand of the translation.

519

S-G. Shih

References

Dyskin, A., V. Dyskin, Y. Estrin, A. Kanel-Belov, and E. Pasternak (2003). Topo-
logical interlocking of platonic solids: A way to new materials and structures.
Philosophical Magazine Letters.

Estrin, Y., A. Dyskin, and E. Pasternak (2011). Topological interlocking as a
material design concept. Mater. Sci. Eng. C, Principles and Development of
Bio-Inspired Materials 31, 1189-1194.

Fu, C., X. Yan, L. Yang, P. Jayaraman, and D. Cohen-Or (2015). Computational
interlocking furniture assembly. Journal of ACM Transactions on Graphics (TOG),
Proceeding of ACM SIGGRAPH 2015.

Kanel-Belov, A., A. Dyskin, Y. Estrin, E. Pasternak, and |. lvanov-Pogodaev (2010).
Interlocking of convex polyhedra: towards a geometric theory of fragmented
solids. Moscow Mathematical Journal 10(2), 337-342.

Lo, K.-Y., C.-W. Fu, and H. Li (2009). 3d polyomino puzzle. ACM Trans.
Graph. 28(5).

Shih, S. (2016). Advances in Architectural Geometry 2016, Chapter On the
Hierarchical Construction of SL Blocks — A Generative System that Builds
Self-Interlocking structures. Hochschulverlag AG an der ETH Ziirich.

Shih, S. G. (2018). The art and mathematics of self-interlocking sl blocks. In
Bridges 2018 Conference Proceedings, pp. 107-114.

Song, P., C. Fu, and D. Cohen-Or (2012). Recursive interlocking puzzles. ACM
Trans. Graph. 31(6).

Weizmann, M., O. Amir, and Y. J. Grobman (2017). Topological interlocking in
architecture: A new design method and computational tool for designing building
floors. International Journal of Architectural Computing 15(2), 107-118.

Yong, H. (2011). Utilisation of topologically-interlocking osteomorphic blocks for
multi-purpose civil construction. Ph. D. thesis, University of Western Australia.

520

Grammars of Interlocking SL Blocks

521

	Grammars of Interlocking SL Blocks
	Introduction and background
	Semi-interlocking
	The SL block, Conjugate pair, concatenation and SL strand

	Methods
	String representation of SL strands
	SL strand grammars
	Fixed ending grammar
	Inserting grammars to strand
	Inserting a grammar to another grammar
	Syntax-directed translation

	Results
	Conclusion

